Effect of Deficit Irrigation on some Physiological Characteristics and Yield in Two Potato (Solanum tuberosum L.) Cultivars

Document Type : Research Article


1 PhD Graduate of National Academy of Sciences, Armenia

2 Professor, Institute of Botany, National Academy of Sciences, Armenia

3 Assistant Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Razi University, Kermanshah

4 Assistant Professor, Department of Seed and Pant Improvment, Hamedan Agricultural and Natural Resources Research and Education Center, AREEO, Hamadan, Iran

5 Assistant Professor, Department of Agricultural Engineering Research, Hamedan Agricultural and Natural Resources Research and Education Center, AREEO, Hamadan, Iran


Potato crop requires substantial amount of water and is extremely susceptible to water stress. Therefore, irrigation management is particularly important for its cultivation. In order to study of yield and biochemical properties of potato leaves under deficit irrigation, a field split-plot experiment was carried out based on a completely randomized block design with three replications. Main plot included six irrigation regimes [100%, 90%, 80%, 70%, 60%, and 50% of water requirement] and sub-plots included cultivars Sante and Savalan. Irrigation treatments had significant effects on leaf soluble proteins and sugar, leaf relative  water content, and yields and dry weights of tubers per plant. Severe water deficit stress reduced leaf soluble proteins content, leaf relative water content, yields and dry weights of tubers per plant. Irrigation regime × cultivar interaction was significant for concentrations of leaf potassium and proline. Results also indicated that the highest values of soluble sugar (2.8 µmol.g-1of FW) and soluble proteins (3 µmol.gr-1of FW) were related to 50% and80% irrigation regimes, respectively. The lowest yield (204.9 gr.plant-1) and dry weight (46.8 gr.plant-1) of tubers were observed in 50% of complete irrigation. Maximum concentrations of potassium(43 mg.gr-1of DW) and proline (2.2 µmol.gr-1 of FW) in leaves belonged to 50% irrigation regime in cv. Sante. Result from the present research indicated that, under drought conditions, adverse effects of water stress can be reduced and desirable product can be attained by managing irrigation (deficit irrigation) appropriately.


Main Subjects

خیرابی، ج. 1381. بررسی و مقایسه تطبیقی روش پنمن - مانتیس با روش‌های فائو 24 در ایران. انتشارات کمیته ملی آبیاری و زهکشی ایران. 216 صفحه.
شیری­جناقرد، م.، توبه، ا.، اصغری­زکریا، ر.، نوری قنبلانی، ق. و دهدارمسجدلو، ب. 1386. تأثیر سطوح مختلف آبیاری قطره‌ای و الگوهای مختلف کشت بر عملکرد و اجزای عملکرد سیب­زمینی رقم آگریا. پژوهش و سازندگی در زراعت و باغبانی، 75: 157-149.
قربانی جاوید، م.، مرادی، ف.، اکبری، غ. و الله­دادی، ا. 1385. نقش برخی متابولیت‌ها در ساز و کار تنظیم اسمزی در یونجه یکساله برگ­بریده ( L. Mill Medicago laciniata) در تنش­خشکی. مجله علوم­زراعی ایران، 8 (2): 105-90.
Bar Akiva, A. 1974. Nitrate estimation in Citrus leaves as a means of evaluating nitrogen fertilizer requirement of citrus trees. International Citrus Congress (Murcia-Valencia), 1: 159-164.
Bradford, M. M. 1976. A rapid and sensitive method for the qualify cation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry, 72: 248-254.
Bates, L. S., Waldren, R. P. and Teare, I. D. 1973. Rapid determination of free proline for water-stress studies. Plant Soil, 39: 205-207.
Crusciol, C. A. C., Pulz, A. L., Lemos, L. B., Soratto, R. P. and Lima, G. P. P. 2009. Effects of silicon and drought stress on tuber yield and leaf biochemical characteristics in potato. Crop Science, 49: 949-954.
Costa, L. D., Vedove, G. D., Gianquintoi, G., Giovanardi, R. and Peressotti, A. 1997. Yield, water use efficiency, and nitrogen uptake in potato: Influence of drought stress. Potato Research, 40: 19-34.
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Biochemistry, 28: 350-356.
Duan, B., Lu, Y., Yin, C., Junttila, C. and Li, C. 2005. Physiological responses to drought and shade in two contrasting Picea asperata populations. Physiologia Plantarum, 124: 476-484.
Foti, S., Mauromicale, G. and Ierna, A. 1995. Influence of irrigation regimes on growth and yield of potato cv. Spunta. Potato Researrch, 38: 307-318.
Fumis, T. F. and Pedras, J. F. 2002.Variação nos níveis de prolina, diamina e poliaminas em cultivares de trigo submetidas a défi cits hídricos. Pesquisa Agropecu Brasil, 37: 449-459.
Gong, H., Zhu, X., Chen, K., Wang, S. and Zhang, C. 2005. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science, 169: 313-321.
Kai, Y. 2011. Effect of drought stress on physiological and biochemical characteristics of sweet potato in different habitats. Journal of Anhui Agricultural Sciences, 4: 59-69.
Kameli, A. and Losel, D.M. 1993. Carbohydrates and water status in wheat plants under water stress. New Phytologist, 125: 609-614.
Karafyllidis, D. I., Stavropoulos, N. and Georgakis, D. 1996. The effect of water stress on the yielding capacity of potato crops and subsequent performance of seed tubers. Potato Research, 39: 153-163.
Khorshidi-Benam, M. B., Rahimzadeh-Khoei, F., Mir-hadi, M. J. and Noor-mohammadi, Gh. 2002. Study of drought stress effects in different growth stages on potato cultivars. Iranian Journal of Crop Sciences, 4: 48-58.
Knipp, G. and Honermeier, B. 2006. Effect of water stress on proline accumulation of genetically modified potatoes (Solanum tuberosum L.) generating fructans. Journal of Plant Physiology, 163 (4): 392-397.
Martinez, C. A. and Moreno, U. 1992. Expresiones fisiologicas de resistencia a la sequia en dos variedades de papa sometidas a estres hidrico. Review Brasil Fisiologicas Vegetal, 4: 33-38.
Masoudi-Sadaghiani, F., Abdollahi- Mandoulakani, B., Zardoshti, M. R., Rasouli-Sadaghiani, M. H. and Tavakoli, A. 2011. Response of proline, soluble sugars, photosynthetic pigments and antioxidant enzymes in potato (Solanum tuberosum L.) to different irrigation regimes in greenhouse condition. Australian Journal of Crop Science, 5 (1): 55-60.
Mohammadkhani, N. and Heidari, R. 2008. Effects of drought stress on soluble proteins in two maize varieties. Turk Journal of Biology, 32: 23-30.
Monneveux, P., Rmirez, D. A. and Pino, M. T. 2013. Drought tolerance in potato (Solanum tuberosum L.): Can we learn from drought tolerance research in cereals?. Plant Science, 205-206: 76-86.
Nadler, A. and Heuer, B. 1995. Effect of saline irrigation and water deficit on tuber quality. Potato Research, 38: 119-123.
Onder, S., Caliskan, M. E., Onder, D. and Caliskan, S. 2005. Different irrigation methods and water stress effects on potato yield and yield components. Agricultural Water Management, 73: 73-86.
Riccardi, F., Gazeau, P. and Vienne, D. 1998. Protein changes in response to progressive water deficit in maize, quantitative variation and polypeptide identification. Plant Physiology, 117: 1253-1263.
Shevyakova, N. I. 1984. Metabolism and the physiological role of proline in plants under conditions of water and salt stress. Soviet Plant Physiology, 30: 597-608.
Shock, C. C., Zalewski, J. C., Stieber, T. D. and Burnett, D. S. 1992. Impact of early-season water deficits on Russet Burbank plant development, tuber yield and quality. American Potato Journal, 69: 793-803.
Tardieu, F. 2012. Any trait or trait-related allele can confer drought tolerance: Just design the right drought scenario. Journal of Experimental Botany, 63: 25-31.
Ti-Da, G. E., Fang-Gong, S. U. I. and Ping, B. A. 2006. Effects of water stress on the protective enzymes and lipid peroxidation in roots and leaves of summer maize. Agricultural Sciences in China, 5: 291-298.
Umar, S. 2006. Alleviating adverse effects of water stress on yield of sorghum, mustard and groundnut by potassium application. Pakistan Journal Botany, 38 (5): 1373-1380.
Zhu, Z., Wei, G., Li, J., Qian, Q. and Yuet, J. 2004. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science, 167: 527-533.