Effect of Carbon Nanotubes on In Vitro Germination of Seeds of Two Strawberry Cultivars

Document Type : Research Article

Authors

1 MSc Graduated, Department of Horticultural Sciences, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz

2 Assistant Professor, Department of Horticultural Sciences, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz

3 Professor, Department of Horticultural Sciences, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz

4 Assistant Professor, Zanjan Agricultural and Natural Resources Research and Education Center, Zanjan, Iran

Abstract

Strawberry seed germination is long and non-uniform and variable, which can cause problems for the plant breeding programs. Reducing the time of germination for strawberry seeds and achieving a high percentage of germination, will allow breeders to easily assess the strawberry germ plasm. Recently, carbon nanotubes have been used to improve seeds germination of plants. Therefore, this experiment was conducted to evaluate the effect of carbon nanotubes on in vitro germination of strawberry seeds. The test was carried out through a factorial experiment based on a completely randomized design with 5 replicates. Factors included two in vitro culture media (B5 and MS), different concentrations of carbon nanotubes (0 (control), 5, 10, 20 and 40 µg/ml) and two cultivars of strawberries (Paros and Camarosa). At the end of experiment (40 days) germination indexes including germination percentage, germination rate, time to 50% of final germination, means of radicle and plumule length (two weeks after germination) were evaluated. The results showed that seeds of the two cultivars cultured on MS and B5 media containing 10, 20 and 40 µg/ml nanotube had no sign of germination. In 0 (control) and 5 µg/ml, seeds on both culture media germinated significantly compared to the other treatments. In most indexes, control treatment was better and significantly different among treatments. The results showed that carbon nanotubes in high concentrations restricted the strawberry seed germination possibly because of toxicity induction for the seed embryo.

Keywords

Main Subjects


جلیلی‌مرندی، ر. 1386. میوه‌های ریز. چاپ دوم. انتشارات جهاد دانشگاهی ارومیه. 297 صفحه.
خیام نکویی، م.، بی‌آزار، ا. و صالحی‌جوزانی، غ. 1389. فناوری نانو در علوم کشاورزی. چاپ اول. انتشارات پژوهشکده بیوتکنولوژی کشاورزی. 241 صفحه.
یوسفی، ر.، موسوی، م.، معلمی، ن. و غفاریان‌مقرب، م. ه. 1390. بررسی اثر نوع محیط‌کشت و هورمون جیبرلین (GA3) بر روی جوانه‌زنی درون‌شیشه‌ای بذور توت‌فرنگی رقم پاروس (Fragaria ananassa cv. Paros). خلاصه مقالات دومین همایش ملی علوم و تکنولوژی بذر. صفحه 67.
یوسفی، ر.، موسوی، م.، معلمی، ن. و غفاریان‌مقرب، م. ه. 1392. بررسی جوانه‌زنی بذور دو رقم توت‌فرنگی کاماروزا و پاروس (Fragaria ananassa cv. Paros and Camarosa) تحت تأثیر خراش‌دهی با اسید‌سولفوریک و نوع محیط‌کشت در شرایط درون‌شیشه‌ای. تولیدات گیاهی (مجله علمی کشاورزی)، 36 (3): 44-35.
Camberato, J. and Mccarty, B. 1999. Irrigation Water Quality: part I. Salinity. South Carolina Turfgrass Foundation New, 6 (2): 6-8.
Debnath, S. C. and Teixeira da Silva, J. A. 2007. Strawberry culture in vitro: applications in genetic transformation and biotechnology. Fruit, Vegetable and Cereal Science and Biotechnology, 1 (1): 1-12.
Donaldson, K., Aitken, R., Tran, L., Stone, V., Duffin, R., Forrest, G. and Alexander, A. 2006. Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicological Sciences, 92 (1): 5-22.
Esechie, H. 1994. Interaction of salinity and temperature on the germination of sorghum. Journal of Agronomy and Crop Science, 172: 194-199.
Gerdakaneh, M., Mozafarin, A. A., Khalighi, A. and Sioseh-mardah, A. 2009. The effects of carbohydrate source and concentration on somatic embryogenesis of  strawberry (Fragaria × ananasa Duch.). American-Eurasian Jornal of Agriculture Environmental Science, 6 (1): 76-80.
Haghighi, M. and Teixeira da Silva, J. A. 2014. The effect of carbon nanotubes on the seed germination and seedling growth of four vegetable species. Journal of Crop Science and Biotechnology, 17 (4): 201-208.
Iyer, C. P. A., Chacko, E. K. and Subramaniam, M. D. 1979. Ethrel for breaking dormancy of strawberry seeds. Current Science, 39: 271-272.
Jiang, Y., Zhao, Y., Liu, Q., Wang, F. and Zhang, Q. 2013. The effect of carbon nanotubes on rice seed germination and root growth. Proceedings of the International Conference on Applied Biotechnology (ICAB), 250: 1207-1212.
Kozai, T., Afreen, F. and Zobayedzobayed, S. M. A. 2005. Photoautotrophic (Sugar-free medium) micropropagation as a new micropropagation and transplant production system. Published by Springer, Netherlands, 316 pp.
Lahiani, M. H., Dervishi, E., Chen, J., Nima, Z., Gaume, A., Biris, A. S. and Khodakovskaya, M. V. 2013. Impact of carbon nanotube exposure to seeds of valuable crops. ACS Applied Materials and Interfaces, 5 (16): 7965-73.
Lee, W., An, Y., Yoon, H. and Kweon, H. 2008. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum sativum): plant uptake for water insoluble nanoparticles. Environmental Toxicological Chemistry, 27 (9): 1915-21.
Lin, D. and Xing, B. 2007. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental Pollution, 150: 243-50.
Lin, D. and Xing, B. 2008. Root uptake and phytotoxicity of ZnO nanoparticles. Environmental Science Technology, 42: 5580-5.
Maguirw, I. D. 1962. Speed germination-aid in selection and evaluation for seedling emergence and vigor. Crop Science, 2: 176-177.
Miller, A. R., Scheerens, J. C., Erb, P. S. and chandler, C. D. 1992. Enhanced strawberry seed germination trough in vitro culture of cut achenes. Journal of American Society of Horticultural Sciences, 117 (2): 313-316.
Pourkhaloee, A., Haghighi, M., Saharkhiz, M. J., Jouzi, H. and Doroodmand, M. M. 2011. Carbon nanotubes can promote seed germination via seed coat penetration. Journal of Seed Technology, 33 (2): 155-169.
Qiaoling, L., Bo, Ch., Qinli, W., Xiaoli, Sh., Zeyu, X., Jinxin, L. and Xiaohong, F. 2009. Carbon Nanotubes as Molecular Transporters for walled plant cells. Nano Letters is published by the American Chemical Society, 9 (3): 1007-1010.
Riazi, Gh. 2004. Study of achenes germination of  different strawberry (Fragaria × ananassa Duch.) under mist and in vitro conditions. Journal of Science and Technology of Agricultural and Natural Resources Spring, 8 (1): 60-70.
Srinivasan, C. and Saraswathi, R. 2010. Nano-agriculture-carbon nanotubes enhance tomato seed germination and plant growth. Current Science, 99 (3): 274-275.
Thompson, P. A. 1969. The use of chillig chemical treatments to promote rapid germination of strawberry achenes. Journal of Horticultural Science, 44: 201-210.
Tripathi, S., Sonkar, S. K. and Sarker, S. 2011. Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Cite this: Doi: 10. 1039/c0nr00722f. WWW.rsc.org/nanoscale.
Wilson, D., Goodall, A. and Reeves, J. 1973. An improved technique for the germination of strawberry seeds. Euphytica, 12: 362-366.
Xingma, M., Jane, G. L., Yang, D. and Andrei, K. 2010. Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Science of the Total Environment, 408: 3053-3061.
Yang, L. and Watts, D. J. 2005. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicological Letters, 158: 122-32.