Physiological Changes and Yield in Speedfeed Sorghum and Millet Cultivares Affected by Delayed Irrigation

Document Type : Research Paper

Authors

1 MSc Graduate, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

2 Assistant Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

3 Associate Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

Abstract

To evaluate drought tolerance of three cultivares of forage millet and one variety of sorghum, this experiment was conducted as split split plot based on a randomized complete block design with three replications. Irrigation frequencies consisted of irrigation after 80 (control), 120 and 160 mm evaporation from class A pan as main plots and sub-plots was consisted of sorghum cultivar (Sorghum bicolor cv. Speedfeed) and three cultivares of millet (Setaria italica cv. Bastan, Panicum miliaceum cv. Pishahang and Pennisetum americanum cv. Nutrifeed). Flage leaf sampling was done at three stages, before, one and three days after irrigation. According to the results, delaying in irrigation caused a reduction in leaf pigments and yield of forage, and it also increased proline, sucrose and soluble sugars of leaf.  Continuation of drought stress effects was observed in the days after irrigation. According to the results for the studied cultivars, 120 and 160 mm evaporations were the moderate and sever irrigation frequencies respectively. It needed at least three days to recover the effects of moderate stress. Speedfeed sorghum produced maximum yield, in each irrigation frequencies. The highest forage dry yield (9376 Kg/ha) belonged to speedfeed sorghum under normal irrigation for. There were positive correlations between yield and proline and sucrose as osmotic regulators, but leaf pigments had no significant correlation. Speedfeed sorghum had also high ability to adapt, and it repaired damages faster than millet cultivares after irrigation.

Keywords


اشتری لرکی، س. 1386. تعیین عملکرد گیاه سورگوم علوفه­ای تحت تنش رطوبتی و کارآیی مصرف آب. اولین همایش منطقه­ای اگر فیزیولوژی گیاهان زراعی. دانشگاه آزاد اسلامی واحد اهواز. صفحه 1180-1187.
صادقی، ا.، موسوی، س. غ. ر.، ثقه اسلامی، م. ج. و علیزاده، ج. 1386. بررسی تأثیر کم آبیاری بر عملکرد و اجزای عملکرد ارزن نوتریفید. ششمی-ن همایش ملی علوم کشاورزی و منابع طبیعی باشگاه پژوهشگران جوان. دانشگاه آزاد اسلامی واحد کرج. صفحه 199.
کافی، م.، کمندی، ع.، برزوئی، ا.، صالحی، م.، معصومی، ع. و نباتی، ج. 1391. فیزیولوژی تنش­های محیطی در گیاهان. جهاد دانشگاهی (دانشگاه فردوسی مشهد).
نباتی، ج.، و رضوانی مقدم، پ. 1389. اثر فواصل آبیاری بر عملکرد و خصوصیات مورفولوژیکی ارزن، سورگوم و ذرت علوفه­ای. مجله علوم گیاهان زراعی ایران. 41 (1): 186-179.
Anjum, S. A., Xie, X. Y., Wang, L., Saleem, M. F., Man, C. and Lei, W. 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6: 2026-2032.
Arnon, A. N. 1967. Method of extraction of chlorophyll in the plants. Agronomy Journal, 23: 112-121.
Ashraf, M. Y., Azmi, A. R., Khan, A. H. and Ala, S. A. 1994. Effect of water stress on total phenols, peroxidase activity and chlorophyll content in wheat. Acta Physiologiae Plantarum, 16 (3): 18-5.
Bates, L. S., Waldern, R. P. and Tear, I. D. 1973. Rapid determination of free proline for water stress studies. Plant Soil, 39: 205-207.
Castrillo, M. and Trujillo, I. 1994. Ribulose 1-5, Biphosphate carboxylase activity and chlorophyll & protein content in two cultivars of French bean plants under water stress and rewatering. Photosynthetic, 30: 175-181.
Dalal, V. K. and Tripathy, B. C. 2012. Modulation of  chlorophyll biosynthesis by water stress in rice seedlings during chloroplast biogenesis. Plant, Cell and Environment, 35: 1685-1703.
Geigenberger, P., Reimholz, R., Geiger, M., Merlo, L., Canale, V. and Stitt, M. 1997. Regulation of sucrose and starch metabolism in potato tubers in response to short-term water deficit. Planta, 201: 502-518.
Golombek, S. and Al- Ramamneh, E. A. D. 2002. Drought tolerance mechanisms of pearl millet. University of Kassel, Institute of Crop Science, Germany.
Gregersen, P. L. and Holm, P. B. 2007. Transcriptome analysis of senescence in the flag leaf of wheat. Plant Biotechnology. 5: 192-206.
Irigoyen, J. J., Emerich, D. W. and Sanchez Diaz, M. 1992. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants, Physiolgy Plant, 84: 55-60.
Kang, Sh., Shi, W. and Zhang, J. 2000. An improved water use efficiency for maize grown under regulated deficit irrigation. Field Crops Research, 67: 207-214.
Kusaka, M., Lalusin, A. G. and Fujimura, T. 2005. The maintenance of growth and turgor in pearl millet (Pennisetum glaceum L.) cultivars with different root structures and osmo-regulation under drought stress. Plant Science, 168: 1-14.
Matthews, M. A. and Anderson, M. M. 1988. Fruit ripening in Vitis vinifera L.: Responses to seasonal water deficits. American Journal of Enology and Viticulture, 39 (4): 313-320.
Mohammadkkhani, N. and Heidari, R. 2008. Drought-induced accumlation of soluble sugars and proline in two maize varieties. World Applied Sciences Journal, 3: 448-453.
Parida, A. K., Dagaonkar, V. S., Phalakand, M. S., and Aurangabadkar, L. P. 2008. Differentialresponse of the enzymes involved in proline biosynthesis and degradation in drought tolerant and sensitive cotton genotypes during drought stress and recovery. Acta Physiologiae Plantarum, 30: 619-627
Pessarkli, M. 1999. Hand book of Plant and Crop Stress. Marcel Dekker Inc. 697 pp.
Pinheiro, C. and Chaves, M. M. 2011. Photosynthesis and drought: can we make metabolic connections from available data. Journal of Experimental Botany, 62 (3): 869-82.
Pirdashti, H., Sarvestani, Z. and Bahmanyar, M. A. 2009. Comparison of physiological response omong four contrast rice cultivars under drought stress conditions. World Academy of Science, Engineering and Technology, 49: 52-53.
Ramak, P., Khavarinejad, R., Heidari, H. and Rafiee, M. 2002. Effect of deficit water stress on root and shoot proline content in Onobrychis raduata and Onobrychis viciifolia species. Abstracts Proceeding of 7th Iranian Congress of Crop Production and Plant Breeding, P 239
Slama, I., Ghnaya, T., Hessini, K., Messedi, D., Savoure, A. and Abdelly, C. 2007. Comparative study of the effects of mannitol and PEG osmotic stress on growth and solute accumulation in Sesuvium portulacastrum. Environmental and Experimental Botany, 61: 10-17.
Steele, M. R. and Hik, D. S. 2003. Is dimethyl sulfoxide a reliable solvent for extracting chlorophyll under field conditions. Photosynthessis Research, 78: 87-91.
Taylor, B. 1996. Proline and water dificit: ups, downs, ins and outs. The plant cell, 8: 1221-1224.
Van Handel, E. 1968. Direct microdetermination of sucrose. Anal. Biochemestry, 22: 280-283.
Vinocur, B. and Altman, A. 2005. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology, 16: 123-132.