Evaluation of Bread Wheat Germplasm and Identification of Water Deficit Tolerant Genotypes in Rain-Fed Conditions of Zanjan Region

Document Type : Research Paper

Authors

1 Assistant Professor, Zanjan Agricultural and Natural Resources Research Center, AREEO, Zanjan, Iran

2 Assistant Professor, Dry Land Agricultural Research Institute (DARI), Agricultural Research, Education and Extension (AREEO), Iran

3 Assistant Professor, Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh, Iran

4 Assistant Professor, Crop and Horticultural Science Research Department, Southern Kerman Agricultural and Natural Resources Research and Education Center, AREEO, Jiroft, Iran

Abstract

In order to evaluate the tolerance to water deficit stress in bread wheat genotypes, 144 genotypes in square lattice with two replications and in two modes of supplementary and water deficit irrigation were evaluated in the rainfed research station of Zanjan Agricultural Research Center during the 2016-2017 crop year. Based on grain yield under supplementary and water deficit irrigation conditions, different stress tolerance indices were measured. The results of analysis of variance showed the existence of genetic diversity between the studied genotypes based on water stress tolerance indices. Comparison of mean genotypes in terms of yield in supplementary and water deficit irrigation conditions showed that 82, 101, 116, 13, 86, 131 and 65 have the highest yield in both environmental conditions. Based on STI, MP, GMP and HM indices, G88 and based on TOL, SSI and YSI indices, G41 genotype were identified as tolerant genotypes. Apart from SSI and YSI indices, other studied indices had a significant correlation with environmental performance and therefore can be used effectively to select cultivars tolerant to drought stress. Using bi-plot diagrams obtained from analysis to the main components, genotype tolerance indices were divided into two separate groups. The genotypes identified by STI, MP, GMP and HM indices were grouped and the genotypes identified by TOL, SSI and YSI indices were placed in a separate group. The genotypes identified in this study can be used in future breeding programs of bread wheat to tolerate water deficit stress in the region.

Keywords

Main Subjects


اقبالی، س.، اهری زاد، س، یارنیا، م. و خلیلی، م. 1395. ارزیابی لاین‌های هاپلوئید مضاعف شده جو (Hordeum vulgare L) با استفاده از شاخص‌های تحمل به تنش کم‌آبی. 10 (1): 150-139.
آقایی سربرزه، م.، روستائی، م.، محمدی، ر.، حق پرست، ر. و رجبی، ر. 1388. شناسایی ژنوتیپ‌های متحمل به تنش خشکی در گندم نان. تولید گیاهان زراعی. 2 (1): 23-1.
بخشایشی قشلاق، م. و شکارچی زاده، م. 1394. ارزیابی ژنوتیپ‌های گندم نان با استفاده از شاخص‌های تحمل به تنش خشکی. پژوهشنامه اصلاح گیاهان زراعی، 7 (1): 59-49.
زبرجدی، ع.، توکلی‏شادپی، س.، اطمینان، ع. و محمدی، ر. 1392. ارزیابی تحمل به تنش خشکی در ژنوتیپ‌‌های گندم دوروم با استفاده از شاخص‌های تحمل به خشکی. 29 (1): 12-1.
سلیمانی‏فرد، ع.، فصیحی، خ.، ناصری‏راد، ه. و ناصری، ر. 1389. ارزیابی شاخص‏های تحمل به تنش خشکی در ژنوتیپ‏های گندم دوروم. مجله پژوهش‏های تولید گیاهی. 7 (2): 58-39.
صادق‏زاده اهری، د. 1385. ارزیابی تحمل به تنش خشکی در ژنوتیپ‌های امیدبخش گندم دوروم. مجله علـوم زراعـی ایـران. 8 (1): 45-30.
عبدالشاهی، ر.، امیدی، م.، طلایی، ا.ر. و یزدی صمدی، ب. 1389. ارزیابی ژنوتیپ‏های گندم نان از لحاظ تحمل به خشکی. تولید گیاهان زراعی، 3 (1): 171-159.
فراهانی، ا. و ارزانی، ا. 1387. بررسی تنوع ژنتیکی ژنوتیپ‌های گندم دوروم با تجزیه و تحلیل آماری چند متغیره. تولید گیاهان زراعی، 1 (4): 64-51.
کریم‏زاده سورشجانی، ه.، امام، ی. و موری، س. 1391. واکنش عملکرد، اجزای عملکرد و شاخص‌های مقاومت به تنش در ارقام گندم نان و دوروم به تنش خشکی پس از گل‌دهی. نشریه علوم گیاهان زراعی ایران، 43 (1): 162-151.
متقی، م.، نجفیان، گ. و بی‏همتا، م. 1389. مقایسه کار آیی روشهای آماری چند متغیره و روش گزینش دو مرحله‏ای ژنوتیپ‏های گندم با ظرفیت عملکرد مطلوب و متحمل به تنش کم‌آبی. دوفصلنامه علوم زراعی. 2 (1): 59-39.
نورمند موید، ف.، رستمی، م. و قنادها، م. 1380. بررسی صفات مرفوفیزیولوژیکی گندم نان و رابطه آن‌ها با عملکرد در شرایط تنش و بدون تنش خشکی. مجله علوم کشاورزی ایران، 32(4): 171-162.
Akcura, M., Partigoc, F. and Kaya, Y. 2011. Evaluating of drought stress tolerance in Turkish bread wheat landraces. The Journal of Animal and Plant Science, 21: 700-709.
Ali, M. B. and El-Sadek, A. N. 2016. Evaluation of drought tolerance indices for wheat (Triticum aestivum L.) under irrigated and rainfed conditions. Communications in Biometry and Crop Science, 11: 77-89.
Azizi-Chakherchaman, S. H., Kazemi-Arbat, H., Yarnia, M., Mostafaeih, D., Hassanpanah Dadashi, M. R. and Easazadeh, R. 2008. Study on relations between relative water content, cell membrane stability and duration of growth period with grain yield of lentil genotypes under drought stress and non-stress conditions. International Meeting on Soil Fertility Land Management and Agroclimatology, Turkey, pp. 749-755.
Blum, A. 1988. Plant breeding for stress environments. CRC Press, Boca Raton, FL, PP: 38-78.
Bouslama, M. and Schapaugh, W. T. 1984. Stress tolerance in soybean. Part 1: evaluation of three screening techniques for heat and drought tolerance. Crop Science, 24: 933-937.
Dadbakhsh, A. R. and Yazdan Sepas, A. 2011. Evaluation of drought tolerance indices for screening bread wheat genotypes in end-season drought stress conditions. Advances in Environmental Biology, 5: 1040-1045.
Fernandez, G. C. J. 1992. Effective selection criteria for assessing plant stress tolerance. In proceeding of a Symposium, Taiwan, 257p.
Fischer, R. and Maurer, R. 1987. Drought resistant in spring wheat cultivars. I: grain yield response. Australian Journal of Agricultural Research, 29: 97-895.
Golabadi, M., Arzani, A. and Mirmohammadi Maibody, S. A. M. 2006. Assessment of drought tolerance in segregating populations in durum wheat. African Journal of Agricultural Research, 1: 162-171.
Rosielle, A. A. and Hamblin, I. 1981. Theoretical aspects of selection for yield in stress and non-stress environments. Crop Science, 21: 43-46.
Shahryari, R., Gurbanov, E., Gadimov, A. and Hassanpanah, D. 2008. Tolerance of 42 bread wheat genotypes to drought stress after anthesis. Pakistan Journal of Biological Science, 11: 1330-1335.
Shanazari, M., Golkar, P. and Mirmohammady Maibody, A. M. 2018. Effects of drought stress on some agronomic and bio-physiological traits of Trititicum aestivum, Triticale, and Tritipyrum genotypes. Archives of Agronomy and Soil Science, 64 (14): 2005-2018.
Sio-Se Mardeh, A., Ahmadi, A., Poustini, K. and Mohammadi, V. 2006. Evaluation of drought resistance indices under various environmental conditions. Field Crops Research, 98: 222-229.
Trethowan, R. M. and Reynolds, M. 2007. Drought Resistance: Genetic Approaches for Improving Productivity under Stress. In: Buck, H. R. et al. (eds): Wheat Production in Stressed Environments. Springer Publishing the Netherlands, 289p.
Trethowan, R. M., Van Ginkel, M. and Rajaram, S. 2002. Progress in breeding wheat for yield and adaptation in global drought affected environments. Crop Science, 42: 1441-1446.