Abdollahi, A., Barin, M., Soltani, A. A., Torabi Giglou, M., Behrouz Ismailpour, B. and tahami, S. K. (2023). Evaluation of Influence of Selenium Foliar Application on Growth and Physiological Characteristics of Basil (Ocimum basilicum L.) in Arsenic-Contaminated Soil. Journal of Vegetables Sciences, 7(2), 59-76. doi: 10.22034/iuvs.2022.1973789.1250
Amerian, M. and Nosratti, I. (2021). Effect of Different Levels of Nano-Selenium and Selenium on Seed Germination and Seedling Growth of Onion (Allium cepa L.). Journal of Vegetables Sciences, 4(2), 67-80. doi: 10.22034/iuvs.2021.521119.1136
Abulghasemi, R. and Haghighi, M. (2018). Study of changes in greenhouse tomatoes treated with beneficial elements in the form of metal metal and nanometals.
Plant Process and Function,
6 (19), 153-162.
http://jispp.iut.ac.ir/article-1-417-en.htm
Adhikary, S., Biswas, B., Chakraborty, D., Timsina, J., Pal, S., Chandra Tarafdar, J., Banerjee, S., Hossain, A. and Roy, S. (2022). Seed priming with selenium and zinc nanoparticles modifies germination, growth, and yield of direct-seeded rice (
Oryza sativa L.).
Scientific Reports,
12, 7103.
https://doi.org/10.1038/s41598-022-11307-4
Aisha, H. A., Hafez, M. M., Asmaa, R. M. and Shafeek, M. R. (2013). Effect of Bio and chemical fertilizers on growth, yield and chemical properties of spinach plant (Spinacia oleracea L.). Middle East Journal of Agriculture Research, 2(1), 16-20.
Akbulut, M. and Cakir, S. (2010). The effects of Se phytotoxicity on the antioxidant systems of leaf tissues in barley (
Hordeum vulgare L.) seedling.
Plant Physiology and Biochemistry,
48(2-3), 160-166.
https://doi.org/10.1016/j.plaphy.2009.11.0011
Alexieva, V., Sergiev, I., Mapelli, S. and Karanov, E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat.
Plant, Cell and Environment,
24(12), 1337-1344.
https://doi.org/10.1046/j.1365-3040.2001.00778.x
Babajani, A., Iranbakhsh, A., Ardebili, Z. O. and Eslami, B. (2019). Differential growth, nutrition, physiology, and gene expression in Melissa officinalis mediated by zinc oxide and elemental selenium nanoparticles. Environmental Science and Pollution Research International, 26, 24430–24444.
Beiramnvand, F., Zahedi, B. and Rezaei Nejad, A. (2023). Investigation of the effect of selenium foliar application on morphophysiological and biochemical characteristics of ornamental salvia under irrigation regime
. Journal of Plant Process and Function,
11(47), 323-330.
http://jispp.iut.ac.ir/article-1-1525-fa.html
Braca, A., Sortino, C., Politi, M., Morelli, I. and Mendez, J. (2002). Antioxidant activity of flavonoids from
Licania licaniaeflora.
Journal of Ethnopharmacology,
79(3), 379-381.
https://doi.org/10.1016/S0378-8741(01)00413-5
Brand-Williams, W., Cuvelier, M. E. and Berset, C. (1995). Use of free radical method to evaluate antioxidant activity. Lebensmittel Wissenschaft und Technologie. 28, 25-30.
Cartes, P., Gianfera, L. and Mora, M.L. (2005). Uptake of selenium and its antioxidative activity in ryegrass when applied a selenate and selenite forms. Plant and Soil. 276, 359–367. doi.org/10.1007/s11104-005-5691-9
Dhindsa, R. S., Plumb-Dhindsa, P. and Thorpe, T. (1981). Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase.
Journal of
Experimental Botany. 32, 93–101.
https://doi.org/10.1093/jxb/32.1.93
Djanaguiraman, M., Belliraj, N., Bossmann, S.H. and Prasad, P.V. (2018). High-temperature stress alleviation by selenium nanoparticle treatment in grain sorghum. ACS Omega. 3, 2479–2491.
Duhan, J.S., Kumar, R., Kumar, N., Kaur, P., Nehra, K. and Duhan, S. (2017). Nanotechnology. The new perspective in precision agriculture. Biotechnology Reports. 15, 11–23.
Dziubinskaa, H., Filekb, M., Krol, E. and Trebacz, K. (2010). Cadmium and selenium modulate slow vacuolar channels in rape (
Brassica napus) vacuoles.
Journal of Plant Physiology.
167, 1566–1570.
https://doi.org/10.1016/j.jplph.2010.06.016
Ebrahimi, A., Galavi, M., Ramroudi, M. and Moaveni, P. (2016) Effect of TiO
2 nanoparticles on antioxidant enzymes activity and biochemical biomarkers in pinto bean (
Phaseolus vulgaris L.).
Journal of Molecular Biology Research.
6, 58– 66.
https://doi.org/10.5539/jmbr.v6n1p58
El-Kinany, R., Brengi, S., Nassar, A. and El-Batal, A. (2019). Enhancement of plant growth, chemical composition and secondary metabolites of essential oil of salt-stressed coriander (Coriandrum sativum l.) plants using selenium, nano-selenium, and glycine betaine. Scientific Journal of Flowers and Ornamental Plants. 6(3), 151-173. Doi: 10.21608/sjfop.2019.84973
El-Sawy, S. M., Fawzy, Z. F., El-Bassiony, A. M. and Mahmoud, S. M. (2019). Effect of Nano bio-selenium and mineral selenium, ascorbic acid and salicylic acid on vegetative growth and fruit yield of pea plants grown under sandy soil conditions. International Journal of Environment. 8 (4), 210- 220.
Farooq, M.U., Ishaaq, I., Barutcular, C., Skalicky, M., Maqbool, R., Rastogi, A., Hussain, S., Allakhverdiev, S.I. and Zhu, J. (2022). Mitigation effects of selenium on accumulation of cadmium and morphophysiological properties in rice varieties. Plant Physiology and Biochemistry. 170, 1–13. https://doi.org/10.1016/j.plaphy.2021.11.035
Ghazi, D.A. (2018). The Contribution of Nano-Selenium in Alleviation of Salinity Adverse Effects on Coriander Plants. Journal of Soil Science and Agricultural Engineering, 9 (12), 753 - 760.
González-Lemus, U., Medina-Pérez, G., Peláez-Acero, A. and Campos-Montiel, R.G. (2022). Decrease of Greenhouse Gases during an In Vitro Ruminal Digestibility Test of Forage (
Festuca arundinacea) Conditioned with Selenium Nanoparticles.
Nanomaterials.
12, 3823.
https://doi.org/10.3390/nano12213823.
Gratão, P.L., Polle, A., Lea, P.J. and Azevedo, R.A. (2005). Making the life of heavy metal-stressed plants a little easier. Functional Plant Biology. 32, 481- 494
Hartikainen, H. 2005. Biogeochemistry of selenium and its impact on food chain quality and human health.
Journal of Trace Elements in Medicine and Biology 18:309–18.
http://doi:10.1016/j.jtemb.2005.02.009.
Huang, S., Kan, Y. and Tang, Y. (2020). Effect of bioorganic selenium on yield, quality and selenium content of green tea. Journal Tea Communication. 47, 610–616.
Huang, S., Yu, K., Xiao, Q., Song, B., Yuan, W., Long, X., Cai, D., Xiong, X. and Zheng, W. (2023). Effect of bio-nano-selenium on yield, nutritional quality and selenium content of radish. Journal of Food Composition and Analysis. 115, 104927. https://doi.org/10.1016/j.jfca.2022.104927.
Hussein, H. A. A., Darwesh, O. M. and Mekki, B. B. (2019). Environmentally friendly nano- selenium to improve antioxidant system and growth of groundnut cultivars under sandy soil conditions. Biocatal. Agric. Biotechnol. 18, 101080.
Ingold, I., Berndt, C., Schmitt, S., Doll, S., Poschmann, G., Buday, K., Roveri, A., Peng, X., Freitas, F.P., Seibt, T. and Mehr, L. (2018). Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis.
Cell.
172, 409–422.
https://doi.org/10.1016/j.cell.2017.11.048
Iqbal, M., Hussain, I., Liaqat, H., Ashraf, M. A., Rasheed, R. and Rehman, A. U. (2015). Exogenously applied selenium reduces oxidative stress and induces heat tolerance in spring wheat. Plant Physiol. Biochem. 94, 95–103.
Jafari, H. and Moghaddam, M. (2023). The Effect of Different Levels of Sodium Selenate and Selenite on Some Growth and Physiological Characteristics of Peppermint (
Mentha piperita L.).
Iranian Journal of Horticultural Science,
54 (2), 269-284.
http://doi.org/10.22059/IJHS.2023.344758.2039.
Jahid, A.M. and Kumar, T.P. (2010). Promotion of growth in mungbean (
Phaseolusaureus Roxb.) by selenium is associated with stimulation of carbohydrate metabolism.
Biological Trace Element Resarch.
143(1), 530-539.
https://doi.org/10.1007/s12011-010-8872-1
Jiang, C., Zu, C., Lu, D., Zheng, Q., Shen, J. and Wang, H. (2017). Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Nature Publishing Group, 1-14.
John, R., Ahmad, P., Gadgil, K. and Sharma, S. (2009). Heavy metal toxicity: Effect plant growth, biochemical parameters and metal accumulation by
Brassica juncea L.
International Journal of Plant Production.
3, 65-75.
https://doi.org/10.22069/ijpp.2012.653
Kaya, C., Higgs, D., Krinak, H. (2001). The effects of high salinity (NaCl) and supplementary phosphorus and potassium on physiology and nutrition development of spinach.
Journal of Plant Physiology.
27, 47-59.
https://www.researchgate.net/publication/228876941
Lapaz, A. D. M., Santos, L. F. D. M., Yoshida, C. H. P., Heinrichs, R., Campos, M. and Reis, A. R. D. (2019). Physiological and toxic effects of selenium on seed germination of cowpea seedlings. Bragantia. 78(4), 498-508.
Li, R., He, J., Xie, H., Wang, W., Bose, S.K., Sun, Y.Y. and Yin, H. (2019). Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (
Triticum aestivum L.).
International Journal of Biological Macromolecules.
126, 91-100.
https://doi.org/10.1016/j.ijbiomac.2018.12.118.
Liu, Y., Sanz-Saez, A., Meng, X., Liu, J., Liang, T., Dai, H. and Zhai, Z. (2020). Promoting effect of Nano-Se on tobacco growth and reactive oxygen species metabolism.
Journal of Plant Nutrition. 2810-2821.
https://doi.org/10.1080/01904167.2020.1793187
Logvinenko, L., Golubkina, N., Fedotova, I., Bogachuk, M., Fedotov, M., Kataev, V., Alpatov, A., Shevchuk, O. and Caruso, G. (2022). Effect of Foliar Sodium Selenate and Nano Selenium Supply on Biochemical Characteristics, Essential Oil Accumulation and Mineral Composition of
Artemisia annua L.
Molecules.
27, 8246.
https://doi.org/10.3390/molecules27238246
Madebo, M. P., Luo, S. M., Wang, L., Zheng, Y. H. and Jin, P. (2021). Melatonin treatment induces chilling tolerance by regulating the contents of polyamine, γ-aminobutyric acid, and proline in cucumber fruit.
Journal of Integrative Agriculture,
20(11), 3060-3074.
https://doi.org/10.1016/s2095-3119(20)63485-2
Malagoli, M., Schiavon, M., dall’Acqua, S., Pilon-Smits, and E. A. H. (2015). Effects of Selenium Biofortification on Crop Nutritional Quality.
Front Plant Science.
6, 280
. https://doi.org/10.3389/fpls.2015.00280
Mashayekhi, K. and Shomali, A. (2018). Botany, physiology and culture of vegetable. Gorgan Univ. Press, 502p. (In Persian).
Mateus, M., Tavanti, R., Tavanti, T., Santos, E., Jalal, A. and Reis, A. (2021). Selenium biofortification enhances ROS scavenge system increasing yield of coffee plants.
Ecotoxicology and Environmental Safety. 209.
https://doi.org/10.1016/j.ecoenv.2020.111772.
Mejía-Ramírez, F., Benavides-Mendoza, A., González-Morales, S., Juárez-Maldonado, A., Lara-Viveros, F.M., Morales-Díaz, A. B. and Morelos-Moreno, Á. (2023). Seed Priming Based on Iodine and Selenium Influences the Nutraceutical Compounds in Tomato (
Solanum lycopersicum L.) Crop.
Antioxidants.
12, 1265.
https://doi.org/10.3390/antiox12061265
Mimmo, T., Tiziani, R., Valentinuzzi, F., Lucini, L., Nicoletto, C., Sambo, P., Scampicchio, M., Pii, Y. and Cesco, S. (2017). Selenium biofortification in Fragaria × ananassa: implications on strawberry fruits quality, content of bioactive health beneficial compounds and metabolomic profile. Front. Plant Sci. 8, 1887.
Møller, I. M., Jensen, P. E. and Hansson, A. (2007). Oxidative modifications to cellular components in plants. Annu. Rev. Plant Biol. 58, 459–481. Doi: 10.1146/annurev.arplant.58.032806.103946
Mousavi, A. A., Roosta, H. R., Esmaeilizadeh, M. and Eshghi, S. (2022). Effects of Selenium and Silicon on Some Vegetative and Biochemical Attributes of Cucumber under Salinity and Alkalinity Stresses in Hydroponic Culture.
IJHST.
23 (1), 63-78. URL:
http://journal-irshs.ir/article-1-541-fa.html. (In Persian).
Nazerieh, H., Ardebili, Z. O. and Iranbakhsh, A. (2018). Potential benefits and toxicity of nanoselenium and nitric oxide in peppermint.
Acta agriculturae Slovenica,
111(2), 357-368.
http://dx.doi.org/10.14720/aas.2018.111.2.11
Pennanen, A., Xue, T., Hartikainen, H and Xue, T. L. (2002). Protective role of selenium in plant subjected to severe UV irradiation stress. Journal Applied. Botany. 76, 66-76.
Rady, M. M., Desoky, E.- S. M., Ahmed, S.M., Majrashi, A., Ali, E. F., Arnaout, S. M. A. I. and Selem, E. (2021). Foliar Nourishment with Nano-Selenium Dioxide Promotes Physiology, Biochemistry, Antioxidant Defenses, and Salt Tolerance in
Phaseolus vulgaris.
Plants.
10, 1189.
https://doi.org/10.3390/plants10061189.
Ramezan, D., Zargar, M., Nakhaev, M., Akhmadovich, K., Bayat, M. and Ghaderi, A. (2024). Selenium alleviates growth characteristics, plant pigments, photosynthetic and antioxidant capacity of basil (Ocimum basilicum L.) under low temperature, Biocatalysis and Agricultural Biotechnology. 58, 103198, https://doi.org/10.1016/j.bcab.2024.103198.
Rezaei Nik, M., Abbasifar, A. and ValizadehKaji, B. 2022. Improvement of the quantitative and qualitative properties of spinach with the use of selenium and green selenium nanoparticles. Journal of horticultural plant nutrition. 4(2)129-144.. DOI: 10.22070/HPN.2022.15335.1158
Rolny, N., Costa, L., Carrión, C. and Guiamet, J. J. (2011). Is the electrolyte leakage assay an unequivocal test of membrane deterioration during leaf senescence? Plant Physiology and Biochemistry. 49(10): 1220-1227. https://doi.org/10.1016/j.plaphy.2011.06.010.
Saffar Yazdi, A., Lahouti, M. and Ganjeali, A. (2012). The Effects of Different Selenium Concentrations on some Morpho-physiological Characteristics of Spinach (
Spinacia oleracea L.).
Journal of horticultural science.
26(3). 292-300.
https://doi.org/10.22067/jhorts4.v0i0.15211
Sairam, R. K. and Srivastava, G. C. (2002). Changes in antioxidant activity in sub-cellular fraction of tolerant and susceptible wheat genotypes in response to long term salt stress.
Plant Science.
162: 897–904.
https://doi.org/10.1016/S0168-9452(02)00037-7
Samavatipour, P., Abdossi, V., Salehi, R., Samavat, S. and Ladan Moghadam, A. (2019). Effect of selenium and some organic materials on morphophysiological traits and secondary metabolites of dill (Anethum graveolens L.). Agroecology Journal. 15(4): 57-66. Doi: 10.22034/aej.2021.682649
Shedeed, Shaymaa I., Fawzy, Z. F. and El-Bassiony, A.M. (2018). Nano and mineral selenium foliar application effect on pea plants (Pisum sativum L.). Bioscience Research. 15(2), 645-654.
sheikhzadeh, P., Behzad, G., Zare, N. and Rostami, M. (2024). Improvement of photosynthetic and biochemical characteristics and cold tolerance in winter oilseed rape (Brassica napus L. Var napus) via selenium nanoparticles application in the rosette stage. Journal of Crops Improvement, 26(2), 213-233. Doi: 10.22059/jci.2022.340264.2692
Sher, A., Ul-Allah, S., Sattar, A., Ijaz, M., Ahmad, W., Bibi, Y. and Qayyum, A. (2022). The effect of selenium concentration on the quantitative and qualitative yield of four safflower (
Carthamus tinctorius L.) genotypes.
Journal of Soil Science and Plant Nutrition,
25, 1–7.
http://dx.doi.org/10.3389/fagro.2024.1389045
Silva, V. M., Tavanti, R. F. R., Grat˜ao, P. L., Alcock, T. D. and Reis, A. R., (2020). Selenate and selenite affect photosynthetic pigments and ROS scavenging through distinct mechanisms in cowpea (
Vigna unguiculata (L.) walp) plants.
Ecotoxicology and Environmental Safety. 201, 110777.
https://doi.org/10.1016/j.ecoenv.2020.110777.
Singh, S., Kaur, M., Sogi, D. S. and Purewal, S.S. (2019). A comparative study of phytochemicals, antioxidant potential and in-vitro DNA damage protection activity of different oat (Avena sativa) cultivars from India. Journal of Food Measurement and Characterization. 13, 347–356.
Tabatabaie Roodsati, S., Iranbakhsh, A., Shamili, M. and Oraghi Ardabili, Z. (2022). The effect of nano selenium and sodium selenate on biochemical, physiological, and growth parameters of Bell pepper (
Capsicum anumm).
Nova Biologica Reperta,
9 (4), 296-306. DOI:
20.1001.1.24236330.1401.9.4.6.8
Thavarajah, D., Abare, A., Mapa, I., Coyne, C. J., Thavarajah, P. and Kumar, S. (2017). Selecting Lentil Accessions for Global Selenium Biofortification.
Plants,
6(3), 34.
https://doi.org/10.3390/plants6030034
Walaa, A. E., Shatlah, M. A., Atteia, M. H. and Sror, H. A., 2010. Selenium induces antioxidant defensive enzymes and promotes tolerance against salinity stress in cucumber seedlings (Cucumis sativus). Arab University Journal of Agricultural Science. 18, 65–76.
Wang, H., Zhang, C., Nie, M., Cheng, D., Chen, J., Wang, S., Lv, J., Niu, Y., (2024). Effects of Foliar Application of Nano-Se on Photosynthetic Characteristics and Se Accumulation in Paeonia Ostii. Russian Journal of Plant Physiology. 71-117. doi.org/10.21203/rs.3.rs-951366/v1
Wang, Y.D., Wang, X. and Wong, Y.S. (2012). Proteomics analysis reveals multiple regulatory mechanisms in response to selenium in rice.
Journal of Proteomics.
75, 1849–1866.
https://doi.org/10.1016/j.jprot.2011.12.030
Wu, M., Cong, X., Li, M., Rao, S., Liu, Y., Guo, J., hu, S., Chen, S. h., Xu, F., Cheng, S. h., Liu, L. and Yu, T. (2020). Effects of different exogenous selenium on Se accumulation, nutrition quality, elements uptake, and antioxidant response in the hyperaccumulation plant
Cardamine violifolia.
Ecotoxicology and Environmental Safety.
204, 111045.
https://doi.org/10.1016/j.ecoenv.2020.111045
Xie, M., Sun, X., Li, P., Shen, X. and Fang, Y. (2021). Selenium in cereals: Insight into species of the element from total amount. Comprehensive review in food science and food safety. 20 (3), 2914- 2940. https://doi.org/10.1111/1541-4337.12748.
Zahedi, S. M., Sadat Hosseini, M., Daneshvar Hakimi Meybodi, N. and da Silva, J. (2019). Foliar application of selenium and nano-selenium affects pomegranate (
Punica granatum cv. Malase Saveh) fruit yield and quality. South
African Journal of Botany.
124, 350-358.
https://doi.org/10.1016/j.sajb.2019.05.019
Zhao, L, Lu, L., Wang, A., Zhang, H., Huang, M., Wu, H., Xing, B., Wang, Z. and Ji, R. (2020). Nano-biotechnology in agriculture, use of nanomaterials to promote plant growth and stress tolerance.
Journal of Agricultural and Food Chemistry,
68(7), 1935-1947.
https://doi.org/10.1021/acs.jafc.9b06615
Zsiros, O., Nagy, V., Párducz, Á., Nagy, G., Ünnep, R., El-Ramady, H., Prokisch, J., Lisztes-Szabó, Z., Fári, M., Csajbók, J., Tóth, S. Z., Garab, G. and Domokos-Szabolcsy, E. (2019). Effects of selenate and red Se-nanoparticles on the photosynthetic apparatus of Nicotiana tabacum. Photosynth Research. 139, 449–460. doi.org/10.1007/s11120-018-0599-