اثر تنش شوری بر خصوصیات مورفولوژیک و فیزیولوژیک در برخی از ژنوتیپ‌های انتخابی بادام پیوند شده روی پایه GF677

نوع مقاله : مقاله علمی-پژوهشی

نویسندگان

1 دانشجوی دکتری گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه گیلان، رشت، ایران

2 دانشیار گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه گیلان، رشت، ایران

3 دانشیار بخش تحقیقات باغبانی، موسسه نهال و بذر کرج، کرج، ایران

4 استادیار بخش تحقیقات اصلاح خاک و مدیریت پایدار اراضی، موسسه آب و خاک کرج، کرج، ایران

چکیده

به­منظور ارزیابی تحمل به شوری تعدادی از ژنوتیپ­های بادام، آزمایشی گلدانی در سال 1392 با دو فاکتور ژنوتیپ در 11 سطح، شامل ارقام تونو،نان پاریل، مامایی، شکوفه، سهند،شاهرود 12، A200 و ژنوتیپ­های 25-1، 16-1 و 40-13 پیوند شده روی پایه GF677و پایه GF677 (پیوند نشده به­عنوان شاهد) و فاکتور شوری آب آبیاری در 5 سطح، شامل 0 (صفر)، 2/1، 4/2، 6/3 و 8/4 گرم در لیتر نمک کلرید سدیم (که به­ترتیب هدایت الکتریکی برابر 5/0، 5/2، 9/4، 3/7 و 8/9 دسی­زیمنس بر متر داشتند)، انجام شد. نتایج نشان داد، با اعمال تنش شوری و افزایش غلظت آن، شاخص­های رشدی شامل ارتفاع شاخه، قطر شاخه، تعداد برگ کل، تعداد برگ‌های سبز، تراکم برگ روی شاخه اصلی، سطح برگ و نسبت سطح برگ،­ وزن تر و خشک برگ، محتوی رطوبت نسبی برگ، شاخص کلروفیل، کلروفیل­های a، b و کل و کارتنوئید در برگ­های بالایی و پایینی، وزن تر و خشک اندام هوایی، وزن تر و خشک ریشه، در تمامی ژنوتیپ­های مطالعه شده، کاهش یافتند. تعداد برگ­های نکروزه، میزان ریزش برگ، نسبت وزن خشک به وزن تر اندام هوایی، نسبت وزن تر و خشک ریشه به وزن تر و خشک اندام هوایی، درصد نشت یونی و درصد آسیب­دیدگی غشاء سلولی در برگ‌های بالایی و پایینی، افزایش یافتند. نتایج به‌دست آمده از این تحقیق نشان داد که نوع رقم پیوندی، در افزایش تحمل شوری بسیار مؤثر است. در مجموع، رقم شاهرود 12، به‌عنوان متحمل­ترین رقم به تنش شوری انتخاب شد. این رقم توانست به‌خوبی شوری تا 6/3 گرم در لیتر کلرید سدیم (3/7 دسی­زیمنس بر متر)، را تحمل نماید. در نقطه مقابل رقم سهند، به‌عنوان حساس‌ترین رقم نسبت به تنش شوری تشخیص داده شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Salinity Stress on the Morphological and Physiological Characteristics in Some Selected Almond (Prunus dulcis) Genotypes Budded on GF677 Rootstock

نویسندگان [English]

  • Ali Momenpour 1
  • Davod Bakhshi 2
  • Ali Imani 3
  • Hamed Rezaie 4
1 PhD Student , Department of Horticulture, Faculty of Agriculture, University of Guilan, Rasht, Iran
2 Associate Professor, Department of Horticulture, Faculty of Agriculture, University of Guilan, Rasht, Iran
3 Associate Professor, Division of Horticultural Researches, Karaj Seeds and Plant Improvement Institute, Karaj, Iran
4 Assistant Professor, Division of Soil Improvement Researches and Lands Sustainable Management, Karaj Water Institute, Karaj, Iran
چکیده [English]

In order to evaluate the tolerance of almond some genotypes to salinity a pot experiment was carried with 2 factors including cultivar and salinity in the year 2013. The cultivars were Touno, Nonparaeil, Mamaei, Shokoufeh, Sahand, Shahroud 12, 1-16, 1-25, A200,13-40 all budded on GF677 and non-budded GF677 as control. The salinity was applied in five levels including 0, 1.2, 2.4, 3.6 and 4.8 g/l of sodium chloride with electrical conductivity equal to 0.5, 2.5, 4.9, 7.3 and 9.8 ds/m, respectively). Results revealed that in all of the studied genotypes branch height, branch diameter, number of total leaves, number of green leaves, leaf density on the main branch, fresh and dry weight, leaf area and leaf area ratio, relative humidity content, chlorophyll a, chlorophyll b, total chlorophylls and carotenoid of upper and lower leaves, fresh and dry weight of leaves, shoots and root reduced when salinity level increased. But, number of necrotic leaves, number of downfall leave, aerial organ dry weight/fresh weight ratio, root/shoot fresh and dry weight ratio, relative ionic percentage and cell membrane injury percentage in upper and lower leaves were increased. According to the results here, scion type could highly critical for the tree tolerant to salinity. Overall, Shahroud 12 was found to be the most tolerant cultivar to salinity stress (7.3 ds/m) among the evaluated cultivars. In contrast, Sahand was the most sensitive cultivar to salinity stress. 

کلیدواژه‌ها [English]

  • Growth indices
  • Ion leakage
  • Sodium chloride
  • Chlorophyll
  • Carotenoid
اورعی. م.، طباطبایی، ج.، فلاحی، ا. و ایمانی، ع. 1388.  اثرات تنش شوری و پایه بر رشد، شدت فتوسنتز، غلظت عناصر غذایی و سدیم درخت بادام. نشریه علوم باغبانی، 23 (2): 140-131.
بای بوردی، ا. 1392. ارزیابی تحمل ارقام دیرگل بادام به شوری. مجله تولید و فرآوری محصولات باغی و زراعی. 3 (3): 225-217.
حیدری شریف­آباد، ح. 1380. گیاه و شوری. موسسه تحقیقات جنگل­ها و مراتع. 76 صفحه.
دژمپور، ج.، علی اصغرزاده، ن.، گریگوریان، و. و مجیدی هروان، ا. 1391. ارزیابی تحمل به شوری چند دورگه بین گونه­ای جنس Prunus. مجله به­نژادی نهال و بذر، 28: 351-339.
رضایی، م.، لسانی، ح.، بابالار، م.، و طلایی، ع. 1385. اثر تنش سدیم کلرید بر شاخص های رشد و میزان عناصر پنج رقم زیتونمجله علوم کشاورزی ایران. 37 (2): 301-293.
غلامی، م. و راحمی، م. 1389. بررسی اثرات تنش شوری کلریدسدیم بر خصوصیات فیزیولوژیکی و مورفولوژیکی پایه رویشی هیبرید هلو-بادام ((GF677. مجله فنآوری تولیدات گیاهی، 9 (1): 31-21.
گریگوریان، و.، جوادی، ص.، کسرائی، ر.، مطلبی­آذر، ع. و دژم­پور، ج. 1381. تعیین تحمل به شوری کلرور سدیمی در دانهال­های چند رقم بادام. مجله علوم و فنون باغبانی ایران، 3 (1 و 2): 14-1.
موسوی، س. ا.، تاتاری، م.، محنت­کش، و. و حقیقی، ف. 1388. پاسخ رشد رویشی دانهال­های جوان پنج رقم بادام به تنش کم­آبی. مجله به­نژادی نهال و بذر، 25 (1): 567-551.
Arnon, D. I. 1949. Copper enzymes in isolated chloroplast polyphenoloxidase in Beta vulgaris. Plant Physiology, 24: 1- 15.
Chen, Q., Zhang, W. H. and Liu, Y. L. 1999. Effect of NaCl, glutathione and ascorbic acid on function of tonoplast vesicles isolated from barley leaf. Journal of Plant Physiology, 155: 685-690.
Chen, S., Li. J., Wang, S., Huttermann, A. and Altman, A. 2001. Salt, nutrient uptake and transport, and ABA of Populus eupharatica; a hybrid in response to increasing soil NaCl. Trees-Structure and Function, 15: 186 194.
Dexter, S. T., Tottingham, W. E. and Graber, L. F. 1930. Preliminary results in measuring the hardiness of plants. Journal of Plant Physiology, 5: 215-223.
Dexter, S. T., Tottingham, W. E. and Graber, L. F. 1932. Investigations of the hardiness of plants by measurement of electrical conductivity. Journal of Plant Physiology, 7: 63-78.
El-Azab, E. M., El-Kobbia, A. M. and El-Khayat, H. M. 1998. Effects of three sodium salts on vegetative growth and mineral composition of stone fruit rootstock seedlings. Alexandria Journal of Agriculture Research, 43: 219-229.
FAO. 2011. Food and Agricultural commodities production. http://faostat.fao.org/site/339/default.aspx.
Karakas, B., Bianco, R. L. and Rieger, M. 2000. Association of marginal leaf scorches with sodium accumulation in salt-stressed peach. Horticulture Science, 35 (1): 83-84.
Lutts, S., Kinet, J. M. and Bouharmont, J. 1995. Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. Journal of Experimental Botany, 46: 1843-1852.
Massai, R., Remorni, D. and Tattini, M. 2004. Gas exchange, water relations and osmotic adjustment in two scion/rootstock combinations of Prunus under various salinity concentrations. Journal of Plant and Soil Science, 259: 153-162.
Montaium, R., Hening, H. and Brown, P. H. 1994. The relative tolerance of six Prunus rootstocks to boron and salinity. American Society for Horticultural Science, 6: 1169-1175.
Moreno, M. A. and Cambra, R. 1994. Adarcias: an almond X peach hybrid rootstock. Horticulture Science, 29: 925-930.
Munns, R. and Tester, M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59: 651-681.
Noitsakis, B., Dimassi, k. and Therios, I. 1997. Effect of NaCl induced salinity on growth, chemical composition and water relation of two almond (Prunus amygdalus L.) cultivars and the hybrid GF677 (Prunus amygdalus×Prunus persica). Acta Horticulturae, 449: 641-648.
Papadakis, I. E., Veneti, G., Chatzissavvidis, C., Sptiropoulos, T. E., Dimassi, N. and Therios, I. 2007. Growth, mineral composition, leaf chlorophyll and water relationships of two cherry varieties under NaCl-induced salinity stress. Soil Science and Plant Nutrition, 53: 252-258.
Rahemi, M., Nagafian, Sh. and Tavallaie, V. 2008. Growth and chemical composition of hybrid GF677 influenced by salinity levels of irrigation water. Plant Sciences, 7 (3): 309-313.
Rahmani, A., Daneshvar, H. A. and Sardabi, H. 2003. Effect of salinity on growth of two wild almond species and two genotypes of the cultivated almond species (P. dulcis). Iranian Journal of Forest and Poplar Research, 11 (1): 202-208.
Shibli, R. A., Shatnawi, M. A. and Swaidat, I. Q. 2003. Growth, osmotic adjustment and nutrient acquisition of bitter almond under induced sodium chloride salinity in vitro. Common Soil Science and Plant Annual, 34: 13-14.
Yamasaki, S. and Dillenburg, L. C. 1999. Measurements of leaf relative water content in Araucaria angustifolia. Revista Brasilian Fisiologia Vegetal, 11: 69-75.