تأثیر 1-متیل‌سیکلو‌پروپان و کلریدکبالت روی برخی شاخص‌های رویشی و زایشی خیار ژینوسیوس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد، گروه علوم باغبانی و گیاهپزشکی، دانشکده‌ی کشاورزی، دانشگاه صنعتی شاهرود، شاهرود، ایران

2 استادیار، گروه علوم باغبانی و گیاهپزشکی، دانشکده‌ی کشاورزی، دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

خیارهای گلخانه‌ای، تمام ماده‌گل هستند ولی در مرحله دوجنسیتی جوانه گل، جنسیت گل‌ها قابل‌‌تغییر هستند پس برای اجرای برنامه‌های اصلاحی و تولید بذر نیاز به ایجاد گل‌های نر در ماده‌گل‌ها است. در این پژوهش، پاسخ اولیه تغییر جنسیت گل‌ها به تیمار 1- متیل سیکلو پروپان (1-MCP) و کلرید کبالت در خیار ژینوسیوس گلخانه‌ای مطالعه شد. تیمار دانهال‌های خیار در مرحله دو برگ حقیقی با استفاده از محلول‌پاشی کلرید کبالت (10، 20 و 40 میلی‌گرم در لیتر) و گاز 1-MCP (1 و 2 میکرولیتر در لیتر به مدت 24 ساعت) نشان داد که 1-MCP ارتفاع گیاه، تعداد برگ، طول و عرض برگ و قطر دمبرگ را نسبت به شاهد افزایش داد ولی تیمار کلرید کبالت قطر ساقه، تعداد برگ، قطر دمبرگ و تعداد گل‌های ماده را نسبت به شاهد کاهش داد. غلظت‌های مختلف 1-MCP بر تعداد گل‌های ماده تأثیری نداشت. نتایج نشان داد که غلظت 40 میلی‌گرم در لیتر کلرید کبالت و تیمار 1-MCP در برخی بوته‌ها 1 تا 2 عدد گل نر در اولین و دومین گره ایجاد کردند. آزمایش جوانه‌زنی دانه گرده نشان داد گل‌های نر ایجاد شده نرمال بودند و نمو پرچم‌ها کامل بود. درکل، چون مکانیسم بازدارندگی 1-MCP مشابه یون نقره در مسیر بیوسنتز اتیلن است، مطالعه مولکولی تیمار 1-MCP در لاین‌های ژینوسیوس و مونوسیوس توصیه می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of 1-methylcyclopropene and Cobalt Chloride on Some Vegetative and Reproductive Characteristics of gynoecious Cucumber

نویسندگان [English]

  • Mohammad Reza Bagheri 1
  • Ziba Ghasimi Hagh 2
  • Hassan Khoshghalb 2
1 MSc Graduate, Department of Horticulture Science and Plant Protection, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
2 Assistant Professor, Department of Horticulture Science and Plant Protection, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
چکیده [English]

Greenhouse cucumbers are gynoecious, but in the bisexual stage of flower bud, the sex of flowers can be changed. Therefore, induction male flower is necessary for breeding programs and seed production of gynoecious cucumbers. In this study, the response of flower sex change of gynoecious greenhouse cucumber to 1-methyl cyclopropene (1-MCP) and cobalt hloride was studied. The tretment of cucumber seedlings at two true leaf stage by spraying cobalt chloride (10, 20 and 40 mg.l-1) and 1-MCP gas (for 24 hours with 1 and 2 µl.l-1) showed that, 1-MCP increased plant height, leaf number, leaf length, leaf width and leaf tail diameter compared to the control.  However, cobalt chloride reduced stem diameter, leaf number, leaf tail diameter and Female flower number compared to the control. The different concentrations of 1-MCP didnot affect on the female flowers. The results showed that, the concentration of 40 mg.l-1 cobalt chloride and 1-MCP treatments in some plants 1 to 2 male flowers induced in the first and second nodes. Pollen seed germination test showed that the male flowers formed were normal and the development of stamens was complete. Totally, the inhibitory mechanism of 1-MCP is similar to silver ion in the biosynthesis pathway of ethylene, to better understand the molecular mechanism of flower sex change in cucumber in relation to ethylene, it is recommended to use other concentrations of 1-MCP in the lines of gynoecious and monoesiouse.

کلیدواژه‌ها [English]

  • Greenhouse cucumber
  • Pollen
  • Male flower
  • Flower sex change
Acuna, M. G. V., Biasi, W. V., Mitcham, E. J. and Holcroft, D. 2011. Fruit temperature and ethylene modulate 1-MCP response in Bartlett pears. Postharvest Biology and Technology, 60: 17-23.
Amirian, R., Hojati, Z. and Azadi, P. 2019. Male flower induction significantly affects androgenesis in cucumber (Cucumis sativus L.). The Journal of Horticultural Science and Biotechnology, 95 (2): 183-191.
Amornputti, S., Ketsa, S. and van Doorn, W. G. 2016. 1-Methylcyclopropene (1-MCP) inhibits ethylene production of durian fruit which is correlated with a decrease in ACC oxidase activity in the peel. Postharvest Biology and Technology, 114: 69-75.‏
Atsmon, D. and Galun, E. 1960. A morphogenetic study of staminate, pistillate and hermaphrodite flowers in Cucumis sativus (L.). Phytomorphology, 10: 110-115.
Bai, S. L., Peng, Y. B., Cui, J. X., Gu, H. T., Xu, L. Y., Li, Y. Q., Xu, Z. H. and Bai, S. N. 2004. Developmental analyses reveal early arrests of the spore-bearing parts of reproductive organs in unisexual flowers of cucumber (Cucumis sativus L.). Planta, 220: 230-240.
Beyer, E. 1976. Silver ion: A potent antiethylene agent in cucumber and tomato. HortScience, 11: 195-196.
Chen, H., Sun, J., Li, S., Cui, Q., Zhang, H., Xin, F., Wang, H., Lin, T., Gao, D., Wang, S., Li, X., Wang, D., Zhang, Z., Xu, Z. and Huang, S. 2016. An ACC oxidase gene essential for cucumber carpel development. Molecular Plant, 9: 1315-1327.
Chen, Y., Chen, D., brahim, A. and Lombardini, L. 2014. Effect of 1-MCP on cotton plants under abiotic stress caused by ethephon. American Journal of Plant Sciences, 5: 3005-3016.
Den nijs, A. and visser, D. 1980. Inducation of maleflower in gynoecious cucumber (Cucumis sativus L.) by silver ions. Euphytica, 29: 273-280.
Ekaterina, P. and Rebecca, G. 2005. Brassinosteroid- induced Femaleness in Cucumber and relation ship to ethylene production. HortScience, 40:1763-1767.
Goffinet, M. C. 1990. Comprative ontogeny of male and female flower of cucumis sativus. Genetics and genomics of Cucurbitaceae pp. 288-304. In: Bates, M., Richard, W., Robinson and Jeffery, C. (eds.). Biology and utilization of the cucurbitaceae. Cornell University Press, New York. 415 pp.  
Grumet, R., Katzir, N. and Garcia-Mas, J. 2017. Genetics and genomics of Cucurbitaceae. Springer Nature. Cham, Switzerland. 434 pp.
Huber, B. 2008. Suppression of ethylene responses through application of 1-Methylcyclopropene: A powerful tool for elucidating ripening and senescence mechanisms in climacteric and nonclimacteric fruits and vegetables. HortScience, 43 (1): 1-6.
Iwahori, S., Lynos, J. M. and Smith, O. E. 1970. Sex expression in cucumber as affected by 2chloro-ethylphosphosphonic acid, ethylene and growth regulators. Plant Physiology, 46: 412-415.
Kandil, H., Ihab, M. F. and El-Maghraby, A. 2013. Effect of cobalt level and nitrogen source on quantity and quality of soybean plant. Journal of Basic and Applied Scientific Research, 3: 185-192.
Karakaya, D. and Padem, D. 2011. The effects of silver nitrate applications on the flower quantity of cucumbers (Cucumis sativus L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39 (1): 139-143.
Korzeniewska, A., Galecka, T. and Niemirowicz-Szczytt, K. 2000. Ethephon treatment on a monoecious cucumber accession for hybrid seed production. Acta Horticulturae, 510: 269-272.
Malepszy, S. and Niemirowicz-Szczytt, K. 1991. Sex determination in cucumber (Cucumis sativus) as a model system for molecular biology. Plant Sciences, 80: 39-47.
Mayers, A., Newman, J., Reid, R. and Dodge, L. 1997. New ethylene inhibitor could extend flower life. Perishable Handling Quarterly, 92: 9-11.
Mohan Ram, H. Y. and Sett, R. 1980. Induction of male flowers in a pistillate line of Ricinus communis L. by silver and cobalt Ions. Planta, 149 (4): 413-415.
Pawełkowicz, M. E., Skarzyńska, A., Pląder, W. and Przybecki, Z. 2019. Genatic and molecular bases of cucumber (Cucumis sativus L.) sex determination. Molecular Breeding, 39 (50): 1-27.
Pawełkowicz, M. E., Osipowski, P., Wojcieszek, M., Kowalczuk, C., Pląder, W. and Przybecki, Z. 2016. Bioinformatic investigationof the role of ubiquitins in cucumber flower morphogenesis. pp. 1-12. In: Proceedings of the Society of Photo-Optical Instrumentation Engineers Conference, Territory, United States.
Reid, M. S. and Celikel, F. 2008. Use of 1-methylcyclopropene in ornamentals: Carnations as a model system for understanding mode of action. Horticultural Science, 43: 95-98.
Sahay, N. and Singh, S. P. 2012. Effect of cobalt application on growth, yield attributes and yield of lentil cultivars. Annals of Plant and Soil Research, 14: 39-41.
Santisree, P., Nongmaithem, S., Vasuki, H., Sreelakshmi, Y., Ivanchenko, M. and Sharma, R. 2011. Tomato root penetration in soil requires a coaction between ethylene and auxin signaling. Plant Physiology, 156: 1424-1438.
Singh, Z., Singh, L., Arora1, C. L. and Dhillon, B. S. 1994. Effect of cobalt, cadmium, and nickel as inhibitors of ethylene biosynthesis on floral malformation, yield, and fruit quality of mango. Journal of Plant Nutrition, 17 (10): 1659-1670.
Sisler, E. C. and Serek, M. 1999. Compounds controlling the ethylene receptor. Botanical Bulletin- Academia Sinica Taipei, 40: 1-7.
Suradinata, Y. and Hamdani, J. 2015. Effect of paclobutrazol and 1-methylcyclopropene (1-MCP) application on Rose (Rosa hybrid L.). Asian Research Journal of Agriculture, 9: 69-76.
Tassoni, A., Watkins, Ch. B. and Davies, P. J. 2006. Inhibition of the ethylene response by 1-MCP in tomato suggests that polyamines are not involved in delaying ripening, but may moderate the rate of ripening or over-ripening. Journal of Experimental Botany, 57: 3313-3325.
Wang, Li., Duan, O., Han, T., Xu, Z. and Bai, S. 2010. Ethylene perception is involved in female cucumber flower development. The Plant Journal, 61: 862-872.
Wittwer, S. H. and Bukovac, M. J. 1958. The effect of gibberellins on economic crops. Economic Botany, 12: 213-255.
Yamasaki, S. and Manabe, K. 2011. Application of silver nitrate induces functional bisexual flowers in gynoecious cucumber plants (Cucumis sativus L.). The Japanese Society for Horticultural Science, 80: 66-75.
Yamasaki, S., Fujii, N. and Takahashi, H. 2003. Characterization of ethylene effects on sex determination in cucumber plants. Sex. Plant Reproduction, 16: 103-111.
Yang, X., Song, J., Campbell-Plamer, L., Fillmore, S. and Zhang, Z. 2013. Effect of ethylene and 1-MCP on expression of genes involved in ethylene biosynthesis and perception during ripening of apple fruit. Postharvest Biology and Technology, 78: 55-66.
Zhang, H., Wang, N., Zheng, S., Chen, M., Ma, X. and Wu, P. 2021. Effects of exogenous ethylene and cobalt chloride on root growth of chinese fir seedlings under phosphorus-deficient conditions. Forests, 12: 15-85.