بررسی اثر روش‌های مختلف کاشت و سطوح مختلف توزیع هورمون‌ها بر صفات عملکرد بیولوژیک و شاخص برداشت ژنوتیپ‌های برنج تحت‌تنش شوری در شمال خوزستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته دکتری، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، خوزستان، ایران

2 استاد، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، خوزستان، ایران

چکیده

این پژوهش با هدف تعیین بهترین روش کشت تحت‌تأثیر هورمون‌های رشدی جهت شناسایی سازگاری ژنوتیپ‌‎های مختلف برنج به‌صورت کرت‌های دو بار خردشده در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در استان خوزستان در دو سال (1397 و 1398) انجام شد. سه شیوه کاشت(خشکه‌کاری، نشایی و مستقیم یا رایج منطقه)، 16 سطح مختلف هورمون‌های اکسین و سالسیلیک اسید به‌صورت پرایمینگ بذری و تیمارهای مختلف اسپری برگی با مقدار یک و دو لیتر در هکتار و زمان‌های اسپری مختلف در مراحل پنجه‌زنی و ظهور خوشه بر ژنوتیپ‌های مختلف برنج مورد‌بررسی قرار گرفت. نتایج تجزیه مرکب نشان‌داد بین اثرات اصلی و متقابل صفات تفاوت معنی‌داری در سطح احتمال یک درصد وجود دارد. بیشترین عملکرد بیولوژیکی با متوسط 16950.49 کیلوگرم در هکتار در ژنوتیپ         IR 81429-B-31 در روش کشت نشایی به‌دلیل ایجاد شرایط مطلوب رشد، با اعمال تیمار هورمونی پرایمینگ با اکسین و اسید سالیسیلیک به‌دلیل مکمل هم بودن دو هورمون رشدی در تنظیم واکنش‌های بیوشیمیایی و مرفولوژیکی گیاه که هرچه زمان استفاده از این هورمون‌ها زودتر باشد به‌لحاظ زمان‌بر بودن اثرات سازگاری به‌مراتب بیشتری به تنش شوری دارند و در روش پرایمینگ به‌دلیل ایجاد مقاومت و تسریع در رشد به‌دست آمد. بیش‌ترین شاخص برداشت نیز با متوسط 73.11 درصد در ژنوتیپ IR 81025-B-347-3 در روش کشت خشکه‌کاری به‌دلیل کاهش عملکرد بیولوژیک، با اعمال تیمار هورمونی یک لیتر اسید سالیسیلیک در مرحله پنجه‌زنی به لحاظ کاهش رشد رویشی در نتیجه عدم استفاده از هورمون اکسین به‌دست‌آمد. در کل رقم دانیال در روش کشت نشایی با تیمار هورمونی پرایمینگ با اکسین و اسید سالسیلیک بیشترین عملکرد دانه  با متوسط 7178.50 کیلوگرم در هکتار دارا بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Effect of Different Planting methods and Different Levels of Hormone Distribution on Biological Performance traits and Harvest Index of Rice Genotypes Under salt Stress in North Khuzestan

نویسندگان [English]

  • kaveh limouchi 1
  • Ataollah Siadat 2
1 PhD Graduated, Department of Plant Production and Genetic, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Khuzestan, Iran
2 Professor, Department of Plant Production and Genetic, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Khuzestan, Iran
چکیده [English]

Introduction
In comparison to sensitive genotypes,  resistant genotypes have more  Stoma closing in stressful conditions. Stress leads to decrease in level, diameter and Stoma in order to improvement of water consumption efficiency and transpiration which also leads to photosynthesis reduction and seed performance, these features have significant and positive correlation with seed performance. Dry weight (DWH) is the key factor that determines the harvest index, which is closely related to the tank capacity. Spraying auxin solution by affecting the cell division and enlargement of endosperm cells or controlling the important growth material towards the destination. and destination capacity are involved, which ultimately leads to increased performance. Auxin hormone is known as a hormone to increase cell elongation, which can ultimately lead to increased performance.
 
Materials and Methods
This study was performed using split-split plots in a randomized complete block design with three replications in Khuzestan province with the aim of determining the best planting pattern and hormone treatment of rice in two cropping years (2018 and 2019). Three planting methods (dry planting, seedlings planting, direct or common planting), 16 different levels of auxin and salicylic acid hormones in the form of seed priming and different leaf spray treatments with 1 and 2 liters per hectare and different spraying times at the tillering stage and the appearance of panicle were applied to different rice genotypes.
 
Results and Discussion
The results of combined analysis showed that except for the interactions of the stomatal surface in other cases, the main effects and the interaction of the traits, there is a significant difference in the probability level of one percent. The highest number of stomata was obtained in arid cultivation method and dollar genotype and the highest number and diameter of stomata in submerged cultivation method and red hat genotype were obtained due to the inverse relationship between traits. Among the hormonal treatments, we saw the highest amount of these traits in priming with auxin and salicylic acid due to the optimal compatibility from the earliest stage of growth. The obtained results can be one of the main goals in breeding research and breeding of cultivars with higher resistance to salinity conditions under the in fluence of different hormonal treatments and planting patterns.
 
Conclusions
In general, Daniel cultivar had the highest grain yield with an average of 7178.50 kg / ha in seedling culture method with hormonal treatment of priming with auxin and salicylic acid.

کلیدواژه‌ها [English]

  • Cultivation method
  • Auxin
  • Salicylic acid
  • Seed priming
  • Foliar spray
Ahmad, I., Maqsood, S., Basra, A. and Wahid, A. 2014. Exogenous application of ascorbic acid, salicylic acid and hydrogen peroxide improves the productivity of hybrid maize at low temperature stress. International Journal of Agriculture and Biology, 16: 825-830.
Akita, S. 1982. Studies on competition and compensation of crop planet in sice planet. Scientific reports of the Faculty of Agriculture Kobeuniv, 15:17-20.
Anosheh, P., Emam, Y., Ashraf, M. and Foolad, RN. 2012. Exogenous application in salicylic acid and alleviation chloramquat chloride negative effects. advanced studies in biology journal, 4(11): 501-520.
Ashraf, M., Azhar, N. and Hussain, M. 2006. Indole acetic acid (IAA) induced changes in growth, relative water contents and gas exchange attributes of barley (Hordeum vulgare L.) grown under water stress onditions. Journal of Plant Growth Regulation, 50: 85-90. https://doi.org/10.1007/s10725-006-9130-6
Askari, H., Kazemitabar, SK., Najafi Zarrini, H. and Saberi, MH. 2021. Multivariate Assessment of Salt Tolerance (NaCl) in Barley (Hordeum Volgar L.) Genotypes. Journal of Crop Breeding, 36: 1-8. https://doi.org/10.52547/jcb.12.36.1
Beyzavi, F., Baghzadeh, A., Mirzaei, S., Maleki, M. and Mozafari, H. 2021. Investigation of some Biochemical Traits of Tolerant and Sensitive Wheat Cultivars (Triticum Bioticum) under Salinity Stress. Journal of Crop Breeding, 36: 216-234. https://doi.org/10.52547/jcb.12.36.216
Brenner, ML. and Cheikh, N. 1995. The role of hormones in photosynthate partitioning and seed filling. PP 649-670. In: Davies P.J. (ed.), Plant Hormones, Kluwer Academic Publishers, Dordrecht, the Netherlands. https://doi.org/10.1007/978-94-011-0473-9_30
Cleland, RE. 1987. Auxin and cell elongation. In: P. J. Davies (ed). Plant hormones and their role in plant growth and development. Kluwer . Dordrecht, the Netherlands, PP: 132-148. https://doi.org/10.1007/978-94-009-3585-3_8
Davies, PJ. 1995. Plant Hormones. The Netherlands: Kluwer Academic Publishers, 230 p.
De data, S. K. 1982. Crop establishment technologies and cultural practices for upland rice. Paper presented at the upland rice workshop, pp: 19.
Dunlap, JR. and Binzel, ML. 1996. NaCl reduces Indol-3- acetic acid levels in the roots of tomato plants independent of stress-induced abscise acid. Plant Physiol, 112: 379-384. https://doi.org/10.1104/pp.112.1.379
Espinoza, L. and Ross, J. 1996. Corn production. university arkansas journal, PP: 5-10.
Fariduddin, Q., S. Hayat and A. Ahmad. 2003. Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reducutase activity, and seed yield in Brassica juncea. Journal of Photosynthetica, 41: 281-284. https://doi.org/10.1023/B:PHOT.0000011962.05991.6c
 
 Ghosh, B. and Chakma, N. 2015. Impacts of rice intensification system on two C. D. blocks of Barddhaman district. West Bengal of Current Science, 109(2): 342-346.
Hansen, HK, and Grossmann, K. 2000. Auxin-induced enthylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiology, 124: 1437-1448. https://doi.org/10.1104/pp.124.3.1437
Hayat, S. and Ahmad, A. 2007. Salicylic Acid: plant hormone. International Journal of Springer, PP: 97-99. https://doi.org/10.1007/1-4020-5184-0
Iqbal, N., Nazar, R., Khan, MIR., Masood, A. and Khan, NA. 2011. Role of gibberellins in regulation of source-sink relations under optimal and limiting environmental conditions. Current Science, 100(7): 998-1007.
Iten, M., Hoffmann, T. and Grill, E. 1999. Receptors and signaling components of plant hormones. Journal of Receptor & Signal Transduction Research, 19(1-4): 41-48. https://doi.org/10.3109/10799899909036636
Kusumi, K., Yaeno, T., Kojo, K., Hirayama, M., Hirokawa, D., Yara, A. and Iba, K. 2006. The role of salicylic acid in the glutathione-mediated protection against photooxidative stress in rice. Physiologia Plantarum, 128: 651-661. https://doi.org/10.1111/j.1399-3054.2006.00786.x
Lacerda, CFD., Cambraia, J., Oliva, MA., Ruiz, HA. and Prisco, JT. 2003. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environmental and Experimental Botany, 49: 107-120. https://doi.org/10.1016/S0098-8472(02)00064-3
Larque-Saaveda., A. 1979. Stomatal closure in response to Salicylic acid treatment. Plant Physiology, 93: 371-37. https://doi.org/10.1016/S0044-328X(79)80271-8
Letham, DS. 1978. Cytokinins. PP 205-243. In: Letham DS, Goodwin PB, Higgins TJV (ed) Phytohormones and related compounds, Vol 1. Elsevier, Amsterdam.
Moosavi, A., Tavakkol-Afshari, R., Sharif-Zadeh, F. and Aynehband, A. 2009. Effect of seed priming on germination characteristics, polyphenol oxidase, and peroxidase activities of four amaranth cultivars. Journal of Food, Agriculture & Environment, 7: 353- 358.
Multu, S., Atice, O. and Nalbantoglu, B. 2009. Effect of salicylic acid and salinity on apoplastic and antioxidants enzymes in two wheat cultivars different in salt tolerant. Bioloji and Plant Journal, 53: 334-338. https://doi.org/10.1007/s10535-009-0061-8
Painuli, DK. 2000. Annual Report 1997-1999. All india coordinated research projecton soil physical constraints and their amelioration for sustainable crop production india institute of soil cierce, Bhopal, India, 133 p.
Park, GH., Kim, JH. and Kim, KM. 2014. QTL analysis of yield components in rice using a cheongcheong/nagdong doubled haploid genetic map. American Journal of Plant Sciences, 5: 1174-1180. https://doi.org/10.4236/ajps.2014.59130
Qalavand, A. and Madandoost, M. 1998. Study of the effect of cultivation method and plant density on yield and growth curve of different rice cultivars in Isfahan region. Abstract Seeds and seedlings.
Radwan, DEM. and Soltan, DM. 2012. The negative effects of clethodim in photosynthesis and gas exchange status of maize plants are ameliorated by salicylic acid pretreatment. Photosynthetica Journal, 50: 171-179. https://doi.org/10.1007/s11099-012-0016-8
Saruhan, N., Saglam, A. and Kadioglu, A. 2012. Salicylic acid pretreatment induces drought tolerance and delays leaf rolling by inducing antioxidant systems in maize genotypes. Acta Physiologiae Plantarum, 34: 97-106. https://doi.org/10.1007/s11738-011-0808-7
Senaranta, T., Teuchell, D., Bumm, E. and Dixon, K. 2002. Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regulation, 30: 157-161.
Shakirova, FM., Shakhbutdinova, AR., Bezrukova, MV., Fatkhutdionova, RA. and Fatkhutdionova, DR. 2003. Changes in the hormonal status of wheat seedling induced by salicylic acid and salinity. Plant Science, 164: 317-322. https://doi.org/10.1016/S0168-9452(02)00415-6
Shamsul, H. and Aqil, A. 2007. Salicylic Acid- A Plant Hormone. Springer Prints, Available:www. Spring com. Life Sciences, Plant Sciences.
Shibli, RA., Kushad, M., Yousef, GG. and Lila, MA. 2007. Physiological and biochemical responses of tomato micro shoots to induced salinity stress with associated ethylene accumulation. Plant Growth Regulation, 51: 159-169. https://doi.org/10.1007/s10725-006-9158-7
Szalai, G., Krantev, A., Yordanova, R., Popova, LP. and Janda, T. 2013. Influence of salicylic acid on phytochelatin synthesis in Zea mays during Cd stress. Turkish Journal of Botany, 37: 708-714. https://doi.org/10.3906/bot-1210-6
Taslima, K., Hossain, F. and Ara, U. 2011. Effect of indole-3-acetic acid (IAA) on biochemical responses of cowpea (Vigna unguiculata (L.) Walp) var. bari fellon-1. Bangladesh Journal of Scientific and Industrial Research, 46: 77-82. https://doi.org/10.3329/bjsir.v46i1.8110
Vicent, MRS. and Plasencia, J. 2011. Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany, 62: 3321-3338. https://doi.org/10.1093/jxb/err031
War, AR., Paulraj, MG., War, MY. and Ignacimuthu, S. 2011. Role of salicylic acid in induction of plant defense system in chickpea (Cicer arietinum L.). Plant Signaling and Behavior, 6: 1787-1792. https://doi.org/10.4161/psb.6.11.17685