تأثیر هیومات‌پتاسیم بر صفات مورفولوژیک و فیتوشیمیایی گیاه دارویی پروانش (Catharanthus roseus (L.) G. DON)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم و مهندسی باغبانی، پردیس دانشگاهی، دانشگاه گیلان، رشت، ایران

2 دانشیار، گروه علوم و مهندسی باغبانی، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

3 استادیار، گروه علوم و مهندسی خاک، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

4 استادیار پژوهشی، بخش تحقیقات اصلاح و تهیه نهال و بذر، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی، سازمان تحقیقات، آموزش و ترویج کشاورزی، همدان، ایران

چکیده

پروانش با نام علمی (Catharanthus roseus (L.) G. DON) متعلق به خانواده Apocynaceae است. این گیاه در بسیاری از کشورهای دنیا کشت و تولید می‌شود. به‌منظور بررسی تأثیر کود هیومات‌پتاسیم بر خصوصیات مورفوفیزیولوژیک و ترکیبات فیتوشیمیایی این گیاه، آزمایش مزرعه‌ای در باغ گیاهان دارویی همدان در دو سال زراعی متوالی 1401 و 1402 در قالب طرح بلوک کامل تصادفی اجرا شد. تیمار هیومات‌پتاسیم در پنج سطح 0، 2.5، 3، 3.5، 4 گرم بر مترمربع به‌صورت کودآبیاری و در سه تکرار اعمال شد. اثر هیومات‌پتاسیم بر تعداد گل و برگ، طول ریشه و ساقه، وزن تر و خشک کل گیاه، کلروفیل‌کل، پرولین، فنل‌کل، فلانوئیدکل و فعالیت آنتی‌کسیدانی (DPPH) برگ معنی‌دار بود (p<0.05). هم‌چنین اثر سال بر  این فاکتورها ‌به‌جز  کلروفیل و فنل برگ معنی‌دار شد (p<0.05). اثرمتقابل تیمار× سال بر تعداد گل، وزن خشک کل گیاه و کلروفیل a، معنی‌دار شد (p<0.05). با افزایش سطح هیومات‌پتاسیم مقدار همه صفات ‌به‌جز پرولین افزایش یافت. اعمال تیمار در سال دوم بیشترین تأثیر را بر همه صفات ‌به‌جز کلروفیل b، a، وکل و فنل برگ داشت. مقایسه میانگین اثر متقابل تیمار × سال نشان داد که بیشترین تعداد گل (13.77) و وزن خشک کل (55.32 گرم) در سال دوم کشت در سطح (چهار گرم بر متر مربع) هیومات‌پتاسیم بود. باتوجه‌به نتایج می‌توان گفت که کاربرد پیوسته هیومات‌پتاسیم به‌عنوان کود آلی تأثیر مثبت بر خصوصیات مورفوفیزیولوژیک و ترکیبات فیتوشیمیایی گیاه پروانش داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Potassium Humate on Morphological Traits and Phytochemical Composition of Periwinkle (Catharanthus Roseus (L.) G. DON) Medicinal Plant

نویسندگان [English]

  • Maryam kaviani 1
  • Davood Bakhshi 2
  • Mohammad Bagher Farhangi 3
  • Mehrdad chaichi 4
1 Ph.D. Student, Department of Horticultural Science and Engineering, University Campus 2, University of Guilan, Rasht, Iran
2 Associate Professor, Department of Horticultural Science and Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
3 Assistant professor, Department of Soil Science and Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
4 Assistant professor, Department of Seed and Plant Improvement Research, Agriculture and Natural Resources Center, , Agriculture Research, Education and Extension Organization, Hamedan, Iran
چکیده [English]

Background and objectives
Periwinkle (Catharanthus roseus (L.) G. DON) belongs to the plant family Apocynaceae and is cultivated in many countries around the world. Over 130 indole alkaloids, collectively termed terpenoid indole alkaloids, have been extracted from periwinkle, including the most significant and potent anticancer products vincristine and vinblastine. Soil nutrient elements are especially important for improving the growth and development and quality of medicinal plants. This importance is due to the fact that soil nutrients can be managed and changed, and by adjusting and improving them, the quantity and quality of medicinal plants can be improved. In this regard, sustainable agriculture, emphasizing the balanced use of organic and biological fertilizers, provides an effective solution for increasing the production of agricultural products and maintaining the stability of soil fertility, sustainable and high-quality production. Potassium humate (KH) is natural biological organic nutrient, highly affecting physio-biochemical properties of soil and the productivity of plants. Humic materials derive from the chemical and biological humification of animal and plant matter through the biological processes of microorganisms. These substances impact plant performance and soil fertility by an increase in the soil microbial content stimulating the soil productivityby enhancing the soil-root cation exchange capacity.
 
Methodology
The study aimed at investigating the influence of potassium humate on morphophysiological traits and phytochemical compositions of periwinkle. It utilized a randomized complete block design (RCBD) with three replications during two consecutive growing seasons, 2022 and 2023, in Medicinal herbs garden of Agriculture Research and Training Center, Hamadan. The experiment included five varying doses of potassium humate including 0, 2.5, 3, 3.5, 4 g.m-2 applied through fertigation. The aerial parts and roots were collected during the blooming period (end of August and mid-September). Morphological traits, such as plant height (from the crown to the tip of the main stem) and root length, were measured using a ruler in each replication, and then averaged. The number of flowers and fully grown leaves on each plant was tallied until the end of the growth cycle. To ascertain the fresh and dry weight of the above-ground portions, the plants were severed from the soil surface and weighed using a digital scale. Subsequently, the plants underwent a 72-hour drying process in an oven set at 60 degrees Celsius. Once their weight had reached a stable point, they were weighed again. Also the investigated, physiological and biochemical traits included leaf chlorophyll, proline, flavonoid, total phenol, and antioxidant activity in the leaves of this plant.
 
Results
The effect of potassium humate on flower and leaf numbers, root and stem length, fresh and dry plant weight, chlorophyll, proline, phenol, flavonoid content, and leaf antioxidant activity was significant (p<0.05). Moreover, the year had a notable impact on all these factors except chlorophyll and leaf phenol (p<0.05). The interaction effect of treatment × year on flower numbers, total plant dry weight, and chlorophyll a was also significant (p<0.05). The findings demonstrated that the Potassium humate treatment (4 g.m-2) yielded the highest average count of flowers and leaves, stem and root length, fresh and dry weight of the entire plant, chlorophyll a, chlorophyll b, total chlorophyll, antioxidant activity, phenol, and leaf flavonoids. Conversely, the control treatment displayed the lowest results. The largest quantity of proline was associated with the control treatment. In the second year, applying treatments significantly improved the characteristics of the periwinkle plant. Notably, there was a marked increase in the number of flowers, leaves, stem length, total fresh and dry weight, as well as antioxidant and flavonoid activity in the leaves. Root length, on the other hand, was mainly affected by treatments in the first year. Examination of the treatment-year relationship showed the highest flower count (13.77), whole plant dry weight (55.33 g), and chlorophyll a content in the second year with a potassium humate level of 4 g.m-2.
 
Conclusion
Overall, applying 4 g.m-2 of Potassium humate showed the most significant effect on the morpho-physiological and phytochemical composition of periwinkle plants in the second year. Consistent use of Potassium humate as an organic fertilizer had a positive impact on these characteristics during the entire growth period. The aim of the study was to replace mineral fertilizers with organic and biological fertilizers to improve nutrient uptake, plant growth and phytochemical compositions of periwinkle.

کلیدواژه‌ها [English]

  • Antioxidant
  • growth indices
  • Flavonoid
  • phenol
Arancon, N. Q., Lee, S., Edwards, C. A. and  Atiyeh, R. (2003). Effects of humic acids derived from cattle, food and paper-waste vermicomposts on growth of greenhouse plants: The 7th international symposium on earthworm ecology· Cardiff· Wales· 2002. Pedobiologia, 47(5-6): 741-744. https://doi.org/10.1016/S0031-4056(04)70262-0
 Arteca, R. N. (1996). Plant Growth Substances: Principles and Applications. Springer Science & Business Media. https://doi.org/10.1007/978-1-4757-2451-6
Aslani, S., Barzegar, T. and  Nikbakht, J. (2019). Effect of foliar application of humic acid on growth, yield, and fruit quality of tomato (Lycopersicon pimpinellifolium (L.) Mill) under irrigation deficit stress. Plant Process and Function, 8 (32) : 69-84 (In persian)URL: http://jispp.iut.ac.ir/article-1-851-en.html
Ayman, H. A., Badawy, S. A., Abdel Latef, A. A. H., El Hosary, A. A., Abd El Razek, U. A. and  Taha, R. S. (2021). Integrated effects of potassium humate and planting density on growth, physiological traits and yield of Vicia faba L. grown in newly reclaimed soil. Agronomy, 11 (3): 461-473. https://doi.org/10.3390/agronomy11030461
Bates, L. S., Waldren, R. P. A. and  Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39: 205-207. https://doi.org/10.1007/BF00018060
Berbara, R. L. and  García, A. C. (2013). Humic substances and plant defense metabolism. In: Physiological mechanisms and adaptation strategies in plants under changing environment. Springer, New York, pp. 297-319.  https://doi.org/10.1007/978-1-4614-8591-9_11
Canellas, L. P., Balmori, D. M., Médici, L. O., Aguiar, N. O., Campostrini, E., Rosa, R. C. and  Olivares, F. L. (2013). A combination of humic substances and Herbaspirillum seropedicae inoculation enhances the growth of maize (Zea mays L.). Plant and soil. 366: 119-132. https://doi.org/10.1007/s11104-012-1382-5
Canellas, L. P., Olivares, F. L., Aguiar, N. O., Jones, D. L., Nebbioso, A., Mazzei, P. and  Piccolo, A. (2015). Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae. 196: 15-27. https://doi.org/10.1016/j.scienta.2015.09.013
Canellas, L. P., Spaccini, R., Piccolo, A., Dobbss, L. B., Okorokova-Façanha, A. L., de Araújo Santos, G. and  Façanha, A. R. (2009). Relationships between chemical characteristics and root growth promotion of humic acids isolated from Brazilian oxisols. Soil Science. 174(11): 611-620. https://doi.org/10.1097/SS.0b013e3181bf1e03
Chang, C. C., Yang, M. H., Wen, H. M. and  Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis. 10(3). https://doi.org/10.38212/2224-6614.2748
 Chowdhury, J. A., Karim, M. A., Khaliq, Q. A., Ahmed, A. U. and  Mondol, A. M. (2017). Effect of drought stress on water relation traits of four soybean genotypes. SAARC Journal of Agriculture. 15(2): 163-175. https://doi.org/10.3329/sja.v15i2.35146
Cordeiro, F. C., Santa-Catarina, C., Silveira, V., & De Souza, S. R. (2011). Humic acid effect on catalase activity and the generation of reactive oxygen species in corn (Zea mays). Bioscience, Biotechnology, and Biochemistry. 75(1): 70-74. https://doi.org/10.1271/bbb.100553
Dawood, M. G., Abdel-Baky, Y. R., El-Awadi, M. E. S. and  Bakhoum, G. S. (2019). Enhancement quality and quantity of faba bean plants grown under sandy soil conditions by nicotinamide and/or humic acid application. Bulletin of the National Research Centre. 43: 1-8. https://doi.org/10.1186/s42269-019-0067-0
Ehteshami, M. R. and  Chai-Chi, M. R. (2010). Organic Agriculture (Keshtazi). Guilan University Publications. (In persian).
El-Sawy, S. M., El-Bassiony, A. M., Fawzy, Z. F. and  Shedeed, S. I. (2021). Improving yield, physical and chemical qualities of sweet fennel bulbs by spraying of potassium humate. Journal of Horticultural Science and Ornamental Plants. 13(3): 272-281. https:// doi.org/ 10.5829/idosi.jhsop.2021.272.281
Estefan, G., Sommer, R., and Ryan, J., (2013). Methods of soil, plant, and water analysis. A manual for the West Asia and North Africa region. 3(2). https://doi.org/10.1186/s42269-019-0067-0
Farjami, A. A. and  NABAVI, K. S. (2014). Effect of humic acid and phosphorus on the quantity and quality of Marigold (Calendula officinalis L.) yield. Journal of Crop Ecophysiology. 7: 4 (28), 443-452. (In persian).
Farshchi, H. S. K., Arani, M. A. and  NematiI, S. H. (2014). Phytochemical and Morphological Attributes of St. John's Wort (Hypericum perforatum) Affected by Organic and Inorganic Fertilizers; Humic Acid and Potassium Sulphate. Notulae Scientia Biologicae. 6(3): 326-330. https://doi.org/10.15835/nsb639398
García, A. C., Santos, L. A., de Souza, L. G. A., Tavares, O. C. H., Zonta, E., Gomes, E. T. M., & Berbara, R. L. L. (2016). Vermicompost humic acids modulate the accumulation and metabolism of ROS in rice plants. Journal of Plant Physiology. 192: 56-63. https://doi.org/10.1016/j.jplph.2016.01.008
Gulser, F., Sonmez, F., & Boysan, S. (2010). Effects of calcium nitrate and humic acid on pepper seedling growth under saline condition. Journal of Environmental Biology. 31(5): 873.
Hatano, T., Kagawa, H., Yasuhara, T., & Okuda, T. (1988). Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chemical and Pharmaceutical Bulletin. 36(6): 2090-2097. https://doi.org/10.1248/cpb.36.2090
Hernandez, O. L., Calderín, A., Huelva, R., Martínez-Balmori, D., Guridi, F., Aguiar, N. O. and  Canellas, L. P. (2015). Humic substances from vermicompost enhance urban lettuce production. Agronomy for Sustainable Development. 35: 225-232. https://doi.org/10.1007/s13593-014-0221-x
Ibrahim, S. M., & Ali, A. (2018). Effect of potassium humate application on yield and nutrient uptake of maize grown in a calcareous soil. Alexandria Science Exchange Journal. 39(July-September), 412-418. https://doi.org/10.21608/asejaiqjsae.2018.10601
Idrees, M., Anjum, M. A., & Mirza, J. I. (2018). Potassium humate and NPK application rates influence yield and economic performance of potato crops grown in clayey loam soils. Soil Environ. 37(1): 53-61. https://doi.org/10.25252/SE/18/51384
Jalali, M. (2013). Soil fertility. Bu Ali Sina University Press, 551p. (In persian)
Lichtenthaler, H. K., & Buschmann, C. (2001). Chlorophylls and carotenoids: Measurement and characterization by UV‐VIS spectroscopy. Current Protocols in Food Analytical Chemistry. 1(1): F4-3. https://doi.org/10.1002/0471142913.faf0403s01
Liu, C., Cooper, R. J., & Bowman, D. C. (1998). Humic acid application affects photosynthesis, root development, and nutrient content of creeping bentgrass. Horticultural Science. 33(6): 1023-1025. https://doi.org/10.21273/HORTSCI.33.6.1023
Mohamed, H. F., Mahmoud, A. A., Alatawi, A., Hegazy, M. H., Astatkie, T. and  Said-Al Ahl, H. A. (2018). Growth and essential oil responses of Nepeta species to potassium humate and harvest time. Acta Physiologiae Plantarum.40, 1-8. https:// doi.org/ 10.1007/s11738-018-2778-5.
Mohammed, M. H., Abd-Alrahman, H. A., Abdel-Kader, H. H., & Aboud, F. S. (2021). Effect of potassium humate and levels of potassium fertilization on growth, yield and nutritional status of tomato plants. Journal of Horticultural Sciences &Ornamental Plants. 13(2): 124-133. DOI: 10.5829/idosi.jhsop.2021.124.133
Mousavi, S. A. H., Barzegar, T., Nekounam, F., Ghahremani, Z., & Khani, A. (2023). The effect of humic acid on physiological characteristics, antioxidant activity and yield of Cape gooseberry (Physalis peruviana L.) under deficit irrigation. Journal of Plant Process and Function. 12(54): 171-186. (In persian). https://doi.org/10.22067/jhs.2023.80428.1226
Muscolo, A., Sidari, M. and  Nardi, S. (2013). Humic substance: relationship between structure and activity. Deeper information suggests univocal findings. Journal of Geochemical Exploration. 129: 57-63. https://doi.org/10.1016/j.gexplo.2012.10.012
Nardi, S., Pizzeghello, D., Schiavon, M. and  Ertani, A. (2016). Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Scientia Agricola. 73(1): 18-23. https://doi.org/10.1590/0103-9016-2015-0006
Nejat, N., Valdiani, A., Cahill, D., Tan, Y. H., Maziah, M. and  Abiri, R. (2015). Ornamental exterior versus therapeutic interior of Madagascar periwinkle (Catharanthus roseus): the two faces of a versatile herb. The Scientific World Journal. 2015(1): 982412. https://doi.org/10.1155/2015/982412
Noroozisharaf, A. and  Kaviani, M. (2018). Effect of soil application of humic acid on nutrients uptake, essential oil and chemical compositions of garden thyme (Thymus vulgaris L.) under greenhouse conditions. Physiology and Molecular Biology of Plants. 24(3): 423-431. https://doi.org/10.1007/s12298-018-0510-y
Nourihoseini, S. M., Khorassani, R., Astaraei, A., Rezvani Moghadam, P. and  Zabihi, H. (2016). Effect of different fertilizer resources and humic acid on some morphological criteria, yield and antioxidant activity of black zira seed (Bunium persicum Boiss). Applied Field Crops Research. 29(4): 88-105. (In persian)
Omidbaigi, R. (2005). Production and processing of medicinal plants. Astan Quds Publication, Tehran, Iran, 348 pp. (In persian)
Omidbaigi, R. (2013). Production and processing of medicinal plants. Astan Quds Publication, Tehran, (In Persian).
Omidbeigi, R. (2007). Production and processing of medicinal plants. Astane Ghodse Razavi, Mashhad. (In Persian).
Ozfidan-Konakci, C., Yildiztugay, E., Bahtiyar, M. and  Kucukoduk, M. (2018). The humic acid-induced changes in the water status, chlorophyll fluorescence and antioxidant defense systems of wheat leaves with cadmium stress. Ecotoxicology and Environmental Safety. 155: 66-75. https://doi.org/10.1016/j.ecoenv.2018.02.071
Pazoki, A.R., (2012). Effect of lead, azospirillum and humic acid on chlorophyll content, root and shoot dry weight in rapeseed. Journal of Crop Production Research (environmental stresses in plant sciences). 4(2): 173-184. (In persian)
Piromyou, P., Buranabanyat, B., Tantasawat, P., Tittabutr, P., Boonkerd, N. and  Teaumroong, N. (2011). Effect of plant growth promoting rhizobacteria (PGPR) inoculation on microbial community structure in rhizosphere of forage corn cultivated in Thailand. European Journal of Soil Biology. 47(1): 44-54. https://doi.org/10.1016/j.ejsobi.2010.11.004
Pizzeghello, D., Nicolini, G. and  Nardi, S. (2001). Hormone‐like activity of humic substances in Fagus sylvaticae forests. New Phytologist. 151(3): 647-657. https://doi.org/10.1046/j.0028-646x.2001.00223.x
Rady, M. R. (2019). Plant Biotechnology and Medicinal Plants. Springer International Publishing.
Rahi, A., Davoodi, F. M., Azizi, F. and  Habibi, D. (2012). The study examIned the effects of different amounts of humic acid and response curves In the Dactylis glomerata. 8 (3), 15-28. (In Persian)
Rao, S. R. and  Ravishankar, G. A. (2002). Plant cell cultures: chemical factories of secondary metabolites. Biotechnology Advances. 20(2): 101-153. https://doi.org/10.1016/S0734-9750(02)00007-1
Retab, Y., Selim, S. H., Matter, F., & Hassanein, M. (2022). Influence of sulphur, potassium humate and their interactions on growth, flowering and chemical constituents of roselle plant (Hibiscus sabdariffa). Fayoum Journal of Agricultural Research and Development. 36(1): 34-48. https:// doi.org/ 10.21608/fjard.2022.240921
Sánchez-Sánchez, A., Sánchez-Andreu, J., Juárez, M., Jordá, J., & Bermúdez, D. (2006). Improvement of iron uptake in table grape by addition of humic substances. Journal of Plant Nutrition. 29(2): 259-272. https://doi.org/10.1080/01904160500476087
Schiavon, M., Pizzeghello, D., Muscolo, A., Vaccaro, S., Francioso, O. and  Nardi, S. (2010). High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L.). Journal of Chemical Ecology. 36: 662-669. https://doi.org/10.1007/s10886-010-9790-6
Shahbazi, K., & Besharati, H. (2013). Overview of the fertility status of agricultural soils in Iran. Journal of Land Management.1: 1-15. (In Persian).
Sharif, M., Khattak, R. A. and  Sarir, M. S. (2002). Effect of different levels of lignitic coal derived humic acid on growth of maize plants. Communications in Soil Science and Plant Analysis. 33(19-20): 3567-3580.
Shrivastava, P. and  Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences. 22(2): 123-131. https://doi.org/10.1016/j.sjbs.2014.12.001
Silva, E. M., Souza, J. N. S., Rogez, H., Rees, J. F. and  Larondelle, Y. (2007). Antioxidant activities and polyphenolic contents of fifteen selected plant species from the Amazonian region. Food Chemistry. 101(3): 1012-1018. https://doi.org/10.1016/j.foodchem.2006.02.055
Singleton, V.L., Orthofer, R. and  Lamuela-Raventos, R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology. 299: 152-178.
https://doi.org/10.1016/S0076-6879(99)99017-1
Suzuki, N., Koussevitzky, S. H. A. I., Mittler, R. O. N. and  Miller, G. A. D. (2012). ROS and redox signalling in the response of plants to abiotic stress. Plant, Cell & Environment. 35(2): 259-270. https://doi.org/10.1111/j.1365-3040.2011.02336.x
Taha, R., Seleiman, M. F., Alotaibi, M., Alhammad, B. A., Rady, M. M. and  HA Mahdi, A. (2020). Exogenous potassium treatments elevate salt tolerance and performances of Glycine max L. by boosting antioxidant defense system under actual saline field conditions. Agronomy. 10(11): 1741. https://doi.org/10.3390/agronomy10111741
Theunissen, J., Ndakidemi, P. A. and  Laubscher, C. P. (2010). Potential of vermicompost produced from plant waste on the growth and nutrient status in vegetable production. International Journal of the Physical Sciences. 5(13): 1964-1973. https://doi.org/10.5897/IJPS.9000448
Thomas, P. A., Woodward, J., Stegelin, F. and  Pennisi, B. (2012). A guide for commercial production of vinca. Biulletin, 1219: 1-27.
Trevisan, S., Francioso, O., Quaggiotti, S. and  Nardi, S. (2010). Humic substances biological activity at the plant-soil interface: from environmental aspects to molecular factors. Plant Signaling & Behavior. 5(6): 635-643. https://doi.org/10.4161/psb.5.6.11211