تأثیر نانومس بر ویژگی‌های بیوشیمیایی و رشدی مورینگا (Moringa oleifera L.) تحت تنش شوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق دکتری ، گروه علوم باغبانی، دانشگاه هرمزگان، بندرعباس، ایران

2 دانشیار، گروه علوم باغبانی، دانشگاه هرمزگان، بندرعباس، ایران

3 دانشیار، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان فارس، شیراز، ایران

4 استادیار، بخش زراعی باغی. مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان قزوین، قزوین، ایران

چکیده

مورینگا اولیفرا، گیاهی چندساله و دارویی است که در مناطق گرمسیر رشد می‌کند و می‌تواند طیف گسترده‌ای از شرایط بارندگی را تحمل کند. شوری یکی از تنش‌های غیرزیستی محدودکننده عملکرد در گیاهان است. باتوجه‌به نقش ساختاری مس، استفاده از آن می‌تواند آسیب‌های ناشی از تنش شوری را کاهش دهد. این پژوهش با هدف مطالعه تأثیر نانوذره مس (0، 5، 10 و 20 پی‌پی‌ام) بر ویژگی‌های بیوشیمیایی و رشدی گیاه مورینگا تحت شوری کلریدسدیم (0، 3.9، 7.8 و 11.7 دسی‌زیمنس‌برمتر) انجام شد. نتایج حاکی از آن بود که تأثیر سطوح نمک و نانو مس بر صفات موردارزیابی معنی‌دار است. شوری موجب کاهش در وزن خشک شاخساره، محتوای کلروفیل کل، محتوای نسبی آب برگ، پروتئین و افزایش در فعالیت سوپراکسیددیسموتاز شد. تحت شوری 11.7 دسی‌زیمنس‌بر‌متر، محلول‌پاشی نانومس وزن تر شاخساره (22 درصد)، کاروتنوئید (11 درصد)، پرولین (8 درصد)، پروتئین (16 درصد) و فعالیت سوپراکسیددیسموتاز (10 درصد) شد را افزایش داد. کم‌ترین فلورسانس کلروفیل در گیاهانی که شوری 11.7 دسی‌زیمنس‌بر‌متر را دریافت کرده بودند، مشاهده شد. هم‌چنین شوری 11.7 دسی‌زیمنس‌بر‌متر باعث کاهش سطح برگ (49 درصد) شد. تیمار گیاهان با 20 پی‌پی‌ام نانومس، افزایش 26 درصدی سطح برگ را باعث شد. در مجموع می‌توان نتیجه گرفت که محلول‌پاشی نانوذرات مس (تا 20 پی‌پی‌ام) می‌تواند نقش موثری در کاهش اثرات سوء تنش شوری در گیاه مورینگا داشته و سبب بهبود ویژگی‌های بیوشیمیایی، آنتی‌اکسیدانی و رشدی این گیاه در شرایط شوری شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Impact of Nano Copper on the Biochemical and Growth Characteristics of Moringa (Moringa Oleifera L.) Under Salinity Stress

نویسندگان [English]

  • Mahsa Ameri 1
  • Mansoore Shamili 2
  • Vahid Roshan Sarvestani 3
  • Mostafa Ghasemi 4
1 Former PhD student , Department of Horticultural sciences, University of Hormozgan, Bandar Abbas, Iran
2 Associate professor, Department of Horticultural sciences, University of Hormozgan, Bandar Abbas, Iran
3 Associate Professor, Department of Natural Resources, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Shiraz, Iran
4 Assistant professor, Horticulture Crops Research Department, Qazvin Agricultural and Natural Resources Research and Education Center, AREEO, Qazvin, Iran
چکیده [English]

Introduction
Moringa oleifera is a fast-growing tree that grows mainly in tropical or subtropical regions and in less fertile soils. Moringa owns anti-cancer and antioxidant properties. Moringa seedlings undergone saline water treatment (up to 8 dS/m) with a slight decrease in yield, chlorophyll, protein and antioxidant activity. But salt levels up to 12 dS/m associated with a significant decrease in yield, chlorophyll, peroxidase, superoxide dismutase activity, calcium, potassium, magnesium content, and an increase in catalase activity and phenol content.  Since salinity is one of the destructive stresses on the growth of moringa, providing a suitable method to reduce its detrimental impacts can be effective. Nanomaterials, particles with dimensions between 1 and 100 nanometers, are of interest in agriculture mainly as nanofertilizers. Due to their small size, nanoparticles pass through biological barriers, enter the plant and are easily transferred to various tissues. Copper, as a micro element, presents in the structure of important plant enzymes and plays a role in electrons transfer. While in saline soils, the solubility of copper element is limited, solutions are of interest to supply this element to plants. There is no report on improved salinity tolerance through treatment with nano-Cu in Moringa. Therefore, the aim of this research is to survey the effects of salinity and Cu nano-fertilizer on biochemical and growth traits of Moringa plant.
 
Material and Methods
Six-month-old Moringa seedlings were cultivated in plastic pots. Sodium chloride (0, 3.9, 7.8 and 11.7 dS/m of salt) was considered as salinity treatment (through irrigation water, three times a week). Foliar treatment with nano- Cu (0, 10 and 20 ppm) was applied twice (three and five weeks after the initiation of salinity). Eight weeks after the end of salinity, leaf total chlorophyll and carotenoid content, relative water content, proline, protein, superoxide dismutase enzyme activity, shoot dry and fresh weight, leaf number, leaf area, stem diameeter and chlorophyll fluorescence were measured. The experiment was carried out as a factorial in completely random design in three repetitions (each repetition includes 3 pots). The factors were included irrigation with saline water (0, 3.9, 7.8 and 11.7 dS/m) and nano copper (0, 10 and 20 ml/L). Duncan's test was performed to compare the means.
 
Result and discussion
The lowest total chlorophyll was belonged to 11.7 dS/m salinity and 10 ppm nano-Cu. Foliar spraying of nano-Cu enhanced chlorophyll. 20 ppm of nano-Cu increased total chlorophyll compared to no nano-Cu treatment. 11.7 dS/m of salinity caused an 11% reduction of carotenoids compared to no-salt treatment. 20 ppm nano-Cu caused a 10% boost in carotenoid compared to no nano-Cu treatment. 11.7 dS/m caused a 30% decline in leaf relative water content compared to no-salt condition. Treatment with nano-Cu had no significant impact on leaf relative water content. Enhanced salt levels and foliar spray with nano-Cu, both caused an improvement in proline content. The highest proline content was assigned to the salinity of 11.7 decis/m and 20 ppm nano copper, and the lowest amount was assigned to no-salt treatment and no nano- Cu foliar application. According to findings, enhanced salt levels was accompanied by declined protein, but the usage of nano-Cu improved this trait. The results of SOD activity also indicated that boosted salt levels and the amount of nano-Cu foliar application, both increased SOD activity. In the absence of salt, foliar spraying with nano-Cu elevated shoot fresh weight by 9.4% compared to no nano-Cu treatment. Under 11.7 dS/m of salinity, the application of nano-Cu solution enhanced shoot fresh weight by 22%. Moreover, the treatment of plants with 20 ppm of nano-Cu caused a 26% increment in leaf area compared to no nano-Cu treatment. The highest Fv/Fm was also obtained in plants under the absence of salt and sprayed with 20 ppm nano-Cu. The lowest value of this ratio was also observed in of 11.7 dS/m salt and no nano-Cu foliar application.
 
Conclusion
Salinity led to declined shoot dry weight, leaf total chlorophyll content, relative water content, protein and incresed proline content and SOD activity. Among the nano-Cu treatments, under 11.7 dS/m salinity conditions, 20 mg/L nano-Cu had the most significa nt positive effect on the studied traits. Therefore, Nano-Cu foliar spraying (up to 20 mg/L) can play a fruitful role in reducing the adverse impacts of salinity stress in moringa plant.

کلیدواژه‌ها [English]

  • Chlorophyll
  • Proline
  • Relative leaf water content
  • superoxide dismutase
Abbaspour, H. (2012). Effect of salt stress on lipid peroxidation, antioxidative enzymes, and proline accumulation in pistachio plants. Journal of Medicinal Plants Research6(3), 526-529. http://dx.doi.org/10.5897/JMPR11.1449  
Adrees, M., Ali, S., Rizwan, M., Ibrahim, M., Abbas, F., Farid, M., Ziaur-Rehman, M., Irshad, M. K. and  harwana, S. A. (2015). The effect of excess copper on growth and physiology of important food crops: A review. Environmental Science and Pollution Research, 22, 8148 –8162. https://doi.org/10.1007/s11356-015-4496-5
Ahmed, F., Javed, B., Razzaq, A. and  Mashwan, Z. R. (2021). Applications of copper and silver nanoparticles on wheat plants to induce drought tolerance and increase yield. The Institution of Engineering and Technology Nanobiotechnology, 15, 68 -78. https://doi.org/10.1049/nbt2.12002
Ahmad, P., Ahanger, M. A., Alyemeni, M. N., Wijaya, L., Egamberdieva, D., Bhardwaj, R. and  Ashraf, M. (2017). Zinc application mitigates the adverse effects of NaCl stress on mustard [Brassica juncea (L.) Czern and Coss] through modulating compatible organic solutes, antioxidant enzymes, and flavonoid content. Journal of Plant Interactions, 12, 429-437. https://doi.org/10.1080/17429145.2017.1385867
Azad, H., Fakheri Barat, A., Mehdinezhad, N. and  Parmoon, G. (2018). The study the efficacy of drought stress and foliar application of nano iron chelated on antioxidant enzymes activity and yield flower in plant in chamomile genotypes (Matricaria Chamomilla L.). Journal of Plant Process and Function, 7(26), 223-237. https://sid.ir/paper/397123/en (In Persian)
Baker, N. R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89-113. https://doi.org/10.1146/annurev.arplant.59.032607.092759
Bates, L. S., Waldren, R. P. and  Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. https://doi.org/10.1007/BF00018060
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Broadley, M., Brown, P., Cakmak, I., Rengel, Z. and  Zhao, F. (2012). Function of nutrients: micronutrients. In Marschner's mineral nutrition of higher plants (pp. 191-248). Academic Press, London. https://doi.org/10.1016/B978-0-12-384905-2.00007-8
Bybordi, A. (2012). Study effect of salinity on some physiologic and morphologic properties of two grape cultivars. Life Science Journal, 9(4), 1092-1101. http://www.dx.doi.org/10.7537/marslsj090412.166
Choudhary, R. C., Kumaraswamy, R. V., Kumari, S., Sharma, S. S., Pal, A., Raliya, R., Biswas, P. and  Saharan, V. (2017). Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Scientific Reports7(1), 9754. https://doi.org/10.1038/s41598-017-08571-0
Couee, I., Sulmon, C., Gouesbet, G. and  Amrani, A. (2006). Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. Journal of Experimental Botany, 57(3), 449-459. https://doi.org/10.1093/jxb/erj027
Da Costa, M. V. J. and  Sharma, P. K. (2016). Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica, 54, 110-119. https://doi.org/10.1007/s11099-015-0167-5.
El-Fouly, M. M., Mobarak, Z. M. and  Salama, Z. A. (2011). Micronutrients (Fe, Mn, Zn) foliar spray for increasing salinity tolerance in wheat Triticum aestivum L. African Journal of Plant Science, 5, 314-322. https://academicjournals.org/journal/AJPS/article-full-text-pdf/2A523909639
Essa, H. L., Abdelfattah, M. S., Marzouk, A. S., Shedeed, Z., Guirguis, H. A. and  El-Sayed, M. M. (2021). Biogenic copper nanoparticles from Avicennia marina leaves: Impact on seed germination, detoxification enzymes, chlorophyll content and uptake by wheat seedlings. PlOS One16(4), e0249764. https://doi.org/10.1371/journal.pone.0249764.
Fantoukh, O. I., Albadry, M. A., Parveen, A., Hawwal, M. F., Majrashi, T., Ali, Z., Khan, S.I., Chittiboyina, A.G. and  Khan, I. A. (2019). Isolation, synthesis, and drug interaction potential of secondary metabolites derived from the leaves of miracle tree (Moringa oleifera) against CYP3A4 and CYP2D6 isozymes. Phytomedicine, 60, 153010. https://doi.org/10.1016/j.phymed.2019.153010
Farkhonded, R., Nabizadeh, E. and  Jalilnezhad, N. (2012). Effect of salinity stress on proline content, membrane stability and water relation in two sugar beet cultivars. International Journal of Agicultural Science, 2(5), 385-392. http://www.inacj.com/attachments/sect
Fathi, A., Zahedi, M., Torabian, S. and  Khoshgoftar, A. (2017). Response of wheat genotypes to foliar spray of ZnO and Fe2O3 nanoparticles under salt stress. Journal of Plant Nutrition, 40(10), 1376-1385. https://doi.org/10.1080/01904167.2016.1262418
Fageria, N. K. (2011). The use of nutrients in crop plants. Jahad Daneshgahi Mashhad, Iran. (In Persian)
Filippou, P., Bouchagier, P., Skotti, E. and  Fotopoulos, V. (2014). Proline and reactive oxygen/nitrogen species metabolism is involved in the tolerant response of the invasive plant species Ailanthus altissima to drought and salinity. Environmental and Experimental Botany97, 1-10. https://doi.org/10.1016/j.envexpbot.2013.09.010
Gandji, K., Chadare, F. J., Idohou, R., Salako, V. K., Assogbadjo, A. E. and  Glèlè, R. L. K. (2018). Status and utilisation of Moringa oleifera Lam: A review. African Crop Science Journal, 26, 137–156. https://doi.org/10.4314/acsj.v26i1.10
Ghanbari, M., Mokhtassi-Bidgoli, A., Saran, P. T. S. and  Mahaleh, R. M. L. (2022). Evaluation of leaf yield, physiological and biochemical characteristics of green tea (Camellia sinensis L.) in response to different irrigation regimes and foliar application of Cu and Zn nano-chelate. Journal of Horticultural Plants Nutrition, 5(1), 28-43. https://doi.org/10.22070/hpn.2022.14601.1140
Govorov, A. O. and  Carmeli, I. (2007). Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect. Nano Letters, 7(3), 620-625. https://doi.org/10.1021/nl062528t
Hashemi, A. and  Shahani, A. (2019). Effects of salt stress on the morphological characteristics, total phenol and total anthocyanin contents of Roselle (Hibiscus sabdariffa L.). Plant Physiology Reports, 24, 210-214. https://doi.org/10.1007/s40502-019-00446-y
Hayat, K., Bundschuh, J., Jan, F., Menhas, S., Hayat, S., Haq, F., Shah, M. A., Chaudhary, H. J., Ullah, A., Zhang, D., Zhou, P. (2020). Combating soil salinity with combining saline agriculture and phytomanagement with salt-accumulating plants. Critical Reviews in Environmental Science and Technology, 50(11), 1085-1115. https://doi.org/10.1080/10643389.2019.1646087
Hernández-Fuentes, A. D., López-Vargas, E. R., Pinedo-Espinoza, J. M., Campos-Montiel, R. G., Valdés-Reyna, J. and  Juárez-Maldonado, A. (2017). Postharvest behavior of bioactive compounds in tomato fruits treated with Cu nanoparticles and NaCl stress. Applied Sciences, 7(10), 980. https://doi.org/10.3390/app7100980
Hernández-Hernández, H., González-Morales, S., Benavides-Mendoza, A., Ortega-Ortiz, H., Cadenas-Pliego, G. and  Juárez-Maldonado, A. (2018). Effects of chitosan–PVA and Cu nanoparticles on the growth and antioxidant capacity of tomato under saline stress. Molecules23(1), 178. https://doi.org/10.3390/molecules23010178
Hiscox, J. D. and  Israelstam, G. F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, 57(12), 1332-1334. https://doi.org/10.1139/b79-163
Hosseini, H., Mousavi-Fard, S., Fatehi, F. and  Qaderi, A. (2017). Changes in phytochemical and morpho-physilogical traits of thyme (Thymus vulgaris CV Varico 3) under different salinity levels. Journal of Medicinal plants16(61), 22-33(In Persian). http://jmp.ir/article-1-1419-en.html
Iqbal, M. N., Rasheed, R., Ashraf, M. Y., Ashraf, M. A. and  Hussain, I. (2018). Exogenously applied zinc and copper mitigate salinity effect in maize (Zea mays L.) by improving key physiological and biochemical attributes. Environmental Science and Pollution Research, 25, 23883-23896. https://doi.org/10.1007/s11356-018-2383-6
Jamil, M. and  Rha, E. S. (2013). NaCl stress-induced reduction in growth, photosynthesis and protein in Mustard. Journal of Agricultural Science, 5(9), 114-127. http://dx.doi.org/10.5539/jas.v5n9p114
Kabata-Pendias, A. and  Pendias, H. (1992). Trace elements in soils and plants. CRC Press, Boca Raton, USA. https://doi.org/10.1201/9781420039900
Karnosky, D. F., Gagnon, Z. E., Dickson, R. E., Coleman, M. D., Lee, E. and  Lsebrands, J. (1996) Changes in growth, leaf abscission, and biomass associated with seasonal tropospheric ozone exposures of Populus tremuloides clones and seedlings. Canadian Journal of Forest Research, 26, 23-37. https://doi.org/10.1139/x26-003
Kaya, M. D., Okçu, G., Atak, M., Cıkılı, Y. and  Kolsarıcı, Ö. (2006). Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). European Journal of Agronomy, 24, 291-295. https://doi.org/10.1016/j.eja.2005.08.001.
Khan, I., Saeed, Kh. and  Idrees Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 7, 908-931. https://doi.org/10.1016/j.arabjc.2017.05.011
Kou, X., Li, B., Olayanju, J. B., Drake, J. M. and  Chen, N. (2018). Nutraceutical or pharmacological potential of Moringa oleifera Lam. Nutrients, 10(3), 343. https://doi.org/10.3390/nu10030343
Koyro, H. W. (2006). Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environmental and Experimental Botany, 56, 136-146. https://doi.org/10.1016/j.envexpbot.2005.02.001.
Llamas, A., Ullrich, C. I. and  Sanz, A. (2000). Cadmium effects on transmembrance electrical potential difference, respiration and membrane permeability of rice (Oryza sativa) roots. Plant and Soil, 219, 21-28. https://doi.org/10.1023/A:1004753521646
Lowry, O. H., Rosebrough, N. J. and  Rand, R. J. (1951). Protein measurement with the folinphenol reagent. Journal of Biological Chemistry, 193, 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
Lwalaba, J. L. W., Louis, L. T., Zvobgo, G., Richmond, M. E. A., Fu, L., Naz, S., Mwamba, M., Mundende, R. P. M. and  Zhang, G. (2020). Physiological and molecular mechanisms of cobalt and copper interaction in causing phyto-toxicity to two barley genotypes differing in Co tolerance. Ecotoxicology and Environmental Safety, 187, 109866. https://doi.org/10.1016/j.ecoenv.2019.109866
Ma, J., Saleem, M. H., Yasin, G., Mumtaz, S., Qureshi, F. F., Ali, B., Ercisli, S., Alhag, S.K., Ahmed, A. E., Vodnar, D. C. and  Chen, F. (2022). Individual and combinatorial effects of SNP and NaHS on morpho-physio-biochemical attributes and phytoextraction of chromium through Cr-stressed spinach (Spinacia oleracea L.). Frontiers in Plant Science13, 973740. https://doi.org/10.3389/fpls.2022.973740
Ma, X., Zhang, J. and  Huang, B. (2016). Cytokinin-mitigation of salt-induced leaf senescence in perennial ryegrass involving the activation of antioxidant systems and ionic balance. Environmental and Experimental Botany, 125, 1–11. https://doi.org/10.1016/j.envexpbot.2016.01.002
Maity, A., Natarajan, N., Vijay, D., Srinivasan, R., Pastor, M. and  Malaviya, D. R. (2018). Influence of metal nanoparticles (NPs) on germination and yield of oat (Avena sativa) and berseem (Trifolium alexandrinum). Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 88, 595-607. https://doi.org/10.1007/s40011-016-0796-x  
Mirza Masoumzadeh, B., Imani, A. A. and  Khayamaim, S. (2012). Salinity stress effect on proline and chlorophyll rate in four beet cultivars. Annals of Biological Research, 3(12), 5453-5456. http://scholarsresearchlibrary.com/AB.
Moradbeygi, H., Jamei, R., Heidari, R. and  Darvishzadeh, R. (2020). Investigating the enzymatic and non-enzymatic antioxidant defense by applying iron oxide nanoparticles in Dracocephalum moldavica L. plant under salinity stress. Scientia Horticulturae, 272, 109537. https://doi.org/10.1016/j.scienta.2020.109537
Mostofa, M. G., Rahman, M. M., Ansary, M. M. U., Keya, S. S., Abdelrahman, M., Miah, M. G. and  Phan Tran, L. S. (2021). Silicon in mitigation of abiotic stress-induced oxidative damage in plants. Critical Reviews in Biotechnology, 41(6), 918-934. https://doi.org/10.1080/07388551.2021.1892582
Mykhaylenko, N. F. and  Zolotareva, E. K. (2017). The effect of copper and selenium nanocarboxylates on biomass accumulation and photosynthetic energy transduction efficiency of the green algae Chlorella vulgarisNanoscale Research Letters12, 1-8. https://doi.org/10.1186/s11671-017-1914-2
Nasiri, M., Safari, H. and  Pourhadian, H. (2022). An investigation the effect of copper nanoparticles on morphological, physiological, biochemical properties and yield of Mallow under drought stress conditions. Plant Process and Function, 11(48), 35-47. http://jispp.iut.ac.ir/article-1-1593-en.html (In Persian)
Noman, M., Ahmed, T., Shahid, M., Niazi, M. B. K., Qasim, M., Kouadri, F., Abdulmajeed, A. M., Alghanem, S. M., Ahmad, N., Zafar, M. and  Ali, S. (2021). Biogenic copper nanoparticles produced by using the Klebsiella pneumoniae strain NST2 curtailed salt stress effects in maize by modulating the cellular oxidative repair mechanisms. Ecotoxicology and Environmental Safety217, 112264. https://doi.org/10.1016/j.ecoenv.2021.112264
Noohpisheh, Z., Amiri, H., Mohammadi, A. and  Farhadi, S. (2021). Effect of the foliar application of zinc oxide nanoparticles on some biochemical and physiological parameters of Trigonella foenum-graecum under salinity stress. Plant Biosystems-an International Journal Dealing with all Aspects of Plant Biology155(2), 267-280. https://doi.org/10.1080/11263504.2020.1739160
Nouman, W., Siddiqui, M. T., Basra, S. M. A., Khan, R. A., Gull, T., Olson, M. E. and  Hassan, M. (2012). Response of Moringa oleifera to saline conditions. International Journal of Agriculture and Biology, 14(5), 757–762. http://www.fspublishers.org/ijab/past-issues/IJABVOL_14_NO_5/12.pdf
Ozden, M., Demirel, U. and  Kahraman, A. (2009). Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Scientia Horticulturae, 119(2), 163-168. https://doi.org/10.1016/j.scienta.2008.07.031
Ozturk, L., Demir, Y., Unlukara, A., Karatas, I., Kurunc, A. and  Duzdemir, O. (2012). Effects of long-term salt stress on antioxidant system, chlorophyll and proline contents in pea leaves. Romanian Biotechnological Letters, 17(3), 7227-7236. https://rombio.unibuc.ro/wp-content/uploads/2022/05/17-3-2.pdf
Pareek, A., Pant, M., Gupta, M. M., Kashania, P., Ratan, Y., Jain, V., Pareek, A. and  Chuturgoon, A. A. (2023). Moringa oleifera: An updated comprehensive review of its pharmacological activities, ethnomedicinal, phytopharmaceutical formulation, clinical, phytochemical, and toxicological aspects. International Journal of Molecular Sciences24(3), 2098. https://doi.org/10.3390/ijms24032098
Pasandi Pour, A, Farahbakhsh, H. and  Saffari, M. (2014). Response of fenugreek to short-term salinity stress in relation to lipid peroxidation, antioxidant activity and protein content. Ethno-Pharmaceutical Products, 1(1), 45-52. https://dorl.net/dor/20.1001.1.23833017.2014.1.1.7.6
Pashangah, Z., Shamili, M., Abdolahi, F. and  Ghasemi, M. (2020). The interaction of salinity and gibberellin on leaf abscission, dry matter, antioxidant enzymes activity and ion content in guava (Psidium guajava L). Journal of Plant Research (Iranian Journal of Biology), 33(4), 809-826. https://dorl.net/dor/20.1001.1.23832592.1399.33.4.15.1
Pérez-Labrada, F., López-Vargas, E. R., Ortega-Ortiz, H., Cadenas-Pliego, G., Benavides-Mendoza, A. and  Juárez-Maldonado, A. (2019). Responses of tomato plants under saline stress to foliar application of copper nanoparticles. Plants8(6), 151. https://doi.org/10.3390/plants8060151.
Peyvandi, M. and  Mirza, M., (2011). Comparison of the effect of iron nanoclay on growth parameters and activity of basaltic antioxidant enzymes (Ocimum basilicum). Journal of Cellular Biotechnology –Molecular, 1, 98-89. http://dorl.net/dor/20.1001.1.22285458.1390.1.4.3.7
Prasad, K. S., Patel, H., Patel, T., Patel, K. and  Selvaraj, K. (2013). Biosynthesis of Se nanoparticles and its effect on UV-induced DNA damage. Colloids and Surfaces B: Biointerfaces, 103, 261-266. https://doi.org/10.1016/j.colsurfb.2012.10.029
Rasheed, A., Li, H., Tahir, M. M., Mahmood, A., Nawaz, M., Shah, A. N., Aslam, M.T., Negm, S., Moustafa, M., Hassan, M.U. and  Wu, Z. (2022). The role of nanoparticles in plant biochemical, physiological, and molecular responses under drought stress: A review. Frontiers in Plant Science, 13, 976179. https://doi.org/10.3389/fpls.2022.976179
Rastogi, A., Zivcak, M., Sytar, O., Kalaji, H. M., He, X., Mbarki, S. and  Brestic, M., (2017). Impact of metal and metal oxide nanoparticles on plant: a critical review. Frontiers in Chemistry, 5, 78. https://doi.org/10.3389/fchem.2017.00078.
Riaihinia, S. and  Danaeipour, Z. (2022). Evaluation of the effect of nano and chelated iron fertilizer in Salicornia under salinity stress. Journal of Plant Research (Iranian Journal of Biology), 35(1), 174-188. https://dorl.net/dor/20.1001.1.23832592.1401.35.1.11.5
Rossi, L., Zhang, W. and  Ma, X. (2017). Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers. Environmental Pollution, 229, 132-138. https://doi.org/10.1016/j.envpol.2017.05.083
Sadeghi Lotfabadi S., Kafi, M. and  Khazai, H.R. (2010). Effects of calcium, potassium and method of application on Sorghum (Sorghum bicolor L.) morphological and physiological traits in the presence of salinity. Journal of Water and Soil, 24(2), 385-393. https://doi.org/10.22067/jsw.v0i0.3255
Saeidinia, M., beiranvand, F., Mumivand, H. and  Mousavi, S. H. (2023). The effect of the salinity stress on the yield, morphological characteristics, essential oil and RWC of Satureja hortensis (case study: Khoramabad, Iran). Journal of Drought and Climate change Research, 1(1), 97-108. https://dio.10.22077/JDCR.2023.6152.1017 (In Persian)
Saljougi, S. and  ranjbar, M. (2019). An investigating of the interaction of zinc and copper on the accumulation of elements, antioxidant enzymes, photosynthetic pigments and malon dialdehyde in basil (Ocimum basilicum). Plant Process and Function, 8(33), 339-358. http://jispp.iut.ac.ir/article-1-1002-fa.html. (In Persian)
Schaller, R. D. and  Klimov, V. I. (2004). High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Physical Review Letters, 92(18), 186601-186604. https://doi.org/10.1103/PhysRevLett.92.186601
Shaw, A. K., Ghosh, S., Kalaji, H.M., Bosa, K., Brestic, M., Zivcak, M. and  Hossain, Z. (2014). Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.). Environmental and Experimental Botany, 102, 37-47. https://doi.org/10.1016/j.envexpbot.2014.02.016.
Singh, A., Singh, N. B., Hussain, I. and  Singh, H. (2017). Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. botrytis. Journal of Biotechnology, 262, 11–27. https://doi: 10.1016/j.jbiotec.2017.09.016.
Smart, R. E. and  Bingham, G. E. (1974). Rapid estimates of relative water content. Plant Physiology, 53, 258–260. https://doi.org/10.1104/pp.53.2.258
Soliman, A. S., El-feky, S. A. and  Darwish, E. (2015). Alleviation of salt stress on Moringa peregrina using foliar application of nanofertilizers. Journal of Horticulture and Forestry7(2), 36-47. https://doi.org/10.5897/JHF2014.0379
Tabatabaee, Sh., Iranbakhsh, A., Shamili, M., Oraghi Ardebili, Z. (2021). Copper nanoparticles mediated physiological changes and transcriptional variations in microRNA159 (miR159) and mevalonate kinase (MVK) in pepper; potential benefits and phytotoxicity assessment. Journal of Environmental Chemical Engineering, 9(9), 106151. https://doi.org/10.1016/j.jece.2021.106151
Tiloke, C., Phulukdaree, A. and  Chuturgoon, A. A. (2016). The antiproliferative effect of Moringa oleifera crude aqueous leaf extract on human esophageal cancer cells. Journal of Medicinal Food, 19(4), 398-403. https://doi.org/10.1089/jmf.2015.0113
Toscano, S., Ferrante, A. and  Romano, D. (2019). Response of Mediterranean ornamental plants to drought stress. Horticulturae, 5(1), 6. https://doi.org/10.3390/horticulturae5010006
Tuna, A. L., Kaya, C., Dikilitas, M. and  Higgs, D. (2008). The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environmental and Experimental of Botany, 62, 1–9. https://doi.org/10.1016/j.envexpbot.2007.06.007.
Yang, L., Wang, X., Chang, N., Nan, W., Wang, S., Ruan, M., Sun, L., Li, S. and  Bi, Y. (2019). Cytosolic glucose-6-phosphate dehydrogenase is involved in seed germination and root growth under salinity in Arabidopsis. Frontiers in Plant Science10, 182. https://doi.org/10.3389/fpls.2019.00182
Yang, Y. and  Guo, Y. (2018). Elucidating the molecular mechanisms mediating plant salt stress responses. New Phytologist, 217(2), 523-539. https://doi.org/10.1111/nph.14920
Zarei, M., Azizi, M., Rahemi, M. and  Tehranifar, A. (2016) Evaluation of NaCl salinity tolerance of four fig genotypes based on vegetative growth and ion content in leaves, shoots, and roots. HortScience, 51, 1427-1434.  https://doi.org/10.21273/HORTSCI11009-16