بررسی تأثیر نانواکسید سیلیسیوم پوشش‌دار برعملکرد، ترکیب یونی و تحمل به شوری سیاه‌دانه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، پژوهش بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اصفهان، سازمان تحقیقات آموزش و ترویج کشاورزی، اصفهان، ایران

2 دانشیار، گروه علوم خاک، دانشکده کشاورزی، دانشگاه لرستان، لرستان، ایران

3 استادیار، دانشکده شیمی، دانشگاه لرستان، لرستان، ایران

4 استادیار، پژوهش بخش تحقیقات منابع طبیعی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اصفهان، سازمان تحقیقات آموزش و ترویج کشاورزی، اصفهان، ایران

چکیده

 به‌منظور بررسی تأثیر نانواکسید سیلیسیوم پوشش داده‌شده با اسیدهیومیک (نانوذره پوشش‌دار) بر عملکرد، ترکیب یونی و تحمل به شوری گیاه سیاه‌دانه، این پژوهش در سال زراعی 96-1395 انجام شد. جذب کربن به‌عنوان شاخص اسید هیومیک روی نانوذره در شرایط آزمایشگاهی و اثر بخشی نانوذره پوشش‌دار در قالب طرح اسپیلیت پلات بر پایه بلوک‌های کامل تصادفی در چهار تکرار در شرایط گلخانه‌ای اجرا گردید. تیمار شوری در سه سطح شامل 2، 3.5 و 5 دسی‌زیمنس بر متر با آب آبیاری و تیمار نانوذره پوشش دار در چهار سطح شامل صفر، 0.25، 0.5 و 0.75 گرم در لیتر در دو مرحله چند برگی (15 روز پس از کاشت نشاء) و گل‌دهی (50 روز پس از کاشت نشاء) در آب آبیاری اعمال شدند. نتایج آزمایشگاهی نشان‌داد که مقدار جذب کربن، با افزایش زمان تماس و غلظت اسید هیومیک افزایش و از 7.6 به 111.9 میلی‌گرم در گرم رسید. ارزیابی نتایج گلخانه‌ای نشان‌داد که عملکرد دانه، وزن خشک اندام هوایی، شاخص برداشت، تعداد کپسول بالغ و دانه با افزایش شوری کاهش یافت ولی کاربرد نانوذره پوشش‌دار در غلظت 0.5 گرم در لیتر در کلیه سطوح شوری باعث افزایش معنی‌دار صفات عملکرد دانه، وزن خشک اندام هوایی، شاخص برداشت، تعداد کپسول بالغ، جذب عناصر غذایی و رطوبت نسبی برگ و کاهش معنی‌دار نشت یونی گردید. باتوجه‌به نتایج با کاربرد نانوذره پوشش‌دار می‌توان تحمل به شوری و صفات کمی و کیفی سیاه دانه را در شرایط شور افزایش داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the EFfect of Coated Nanoparticles )Silicon oxide) on Increasing Salinity Tolerance of Black Cumin (Nigella sativa L.)

نویسندگان [English]

  • Hamid Molahoseini 1
  • Mohammad Feizian 2
  • Ebrahim Mehdi Pour 3
  • Saeid Davazdah Emami 4
1 Assistant Professor, Soil and Water Research Department, Isfahan Agricultural and Natural Resources Research and Education Center, AREEO, Isfahan, Iran
2 Associate Professor, Soil Department, Agriculture Faculty, Lorestan University, Lorestan, Iran
3 Assistant Professor, Chimistry Faculty, Lorestan University, Lorestan, Iran
4 Assistant Professor, Natural Resource Research Departments, Isfahan Agricultural and Natural Resources Research and Education Center, AREEO, Isfahan, Iran
چکیده [English]

Introduction
Abiotic stresses pose serious risks for growth and production of crop in the world. Salinity is among the most important environmental stresses that makes limitations to agricultural production in arid and semi-arid regions. Twenty seven million hectares was affected from salinity in Iran. Salinity stress disrupts some plant processes by reducing the osmotic potential, and disrupting the absorption and transfer of certain essential nutrients such as calcium (Ca) and potassium(K). Moreover, direct toxic effects of ions such as sodium (Na) and chlorine (Cl) on cell membranes, as well as enzymes of the plant, disrupt some plant processes. Furthermore, the secondary aspect of all environmental stresses is production of reactive oxygen species (ROS) that makes oxidative damages. Effective strategies to reduce negative effects of salinity stress include the separate or combined use of saline soil amendment methods, cultivation of compatible plants with saline conditions such as medicinal plants, application of optimal levels of chemical fertilizers such as silicon (Si), use of plant growth regulating agents such as humic acid (HA) and salicylic acid (SA), use of nano-fertilizers to improve the nutrient utilization efficiency, and growth stimulants applying.  Therfore current research was performed to investigate the effects of SiO2-nanoparticles coated with humic acid (coHA-nSi) on yield, ion composition and salt tolerance of black cumin (Nigella sativa L.) under laboratory and greenhouse conditions in 2016-2017.
 
Material and Methods
The laboratory experiment was conducted to obtain the adsorption rate and maximum adsorption of HA on the nSi. Total carbon in coHS-nSi as an indicator of HA was determined by using Carbon Analyze requipment (Vario El, Elementar, Germany).The size of nSi was measured by Transmission Electron Microscopy (TEM-EM10C-100KV-Zeiss-Germany) before and after coating process . The greenhouse experiment was conducted to apperceive the effectiveness of coHS-nSi on the yield, ion composition, and the increase of salt tolerance of black cumin(Nigella sativa L.). The treatments were arranged in a split plot design based on Randomized Complete Block Design(RCBD) with four replications and two observations in each plot. The main factor was salinity (NaCl in irrigation water)at three levels including 2 as the control, 3.5 and 5 dS/m, which applied 20 days after transplanting. The subplot was concentration of coHS-nSi in irrigation water at four levels including 0, 0.25, 0.5 and 0.75 g/l,that applied at two growth stages including15 days (p1) and50 days (flowering stage) (p2) after planting. Plants were harvested at maturity stage of seeds. Seed yield and biomass dry weight, harvest index, 1000-seed weight, the number of mature capsules, and the number of seeds were calculated per square meter (number of plants/m2=50). RWC [21] and ion leakage (IL)[22] of black cumin were evaluated as physiological parameters (ten weeks after transplanting). All data was subjected to analysis of variance (ANOVA) by using MSTAT.C software. Duncan's new multiple range test (DNMRT) at 5% probability level was used for mean comparison. Also, the graphs were drawn by Excel.
 
Results and Discussion
The laboratory results showed that the carbon adsorption as an indicator of HA on nSi was increased from 7.6 to 111.9 mgC/g and reached to maximum at 1.6 g/l of HA. Also, the adsorption rate of HA on nSi illustrated that it increased exponentially and peaked at 120 hours. The diameter of nSi was about 20-30 nm and did not change significantly during the experiment. It was confirmed by micrograph made with Transmission Electron Microscopy (TEM-EM10C-100KV-Zeiss-Germany). The greenhouse results demonstrated that the seed yield and biomass dry weight harvest index, and number of capsules and seeds were affected by salinity significantly. These parameters were reduced at 5 dS/m. Furthermore, the application of 0.5 g/l coHA-nSi increased significantly the seed yield and biomass dry weight, harvest index, and number of capsules at all salinity levels.. The biomass dry weight and seed yield was increased by 20 and 30% at 0.5 g/l coHS-nSi treatment, respectively. The results illustrated that these parameters reached to maximum by application of 0.5 g/l coHS-nSi at 5 dS/m. The results of nutrient uptake by black cumin illustrated that the salinity affected the uptake of N, K, Ca, Mg, Fe and ratio of K/Na and Ca/Na while it was not affected S uptake. The application of coHS-nSi affected the uptake of N, K, Mg, Na, S and K/Na ratio at leaves, significantly. The uptake of N, K, Mg, Na, S and K/Na ratio increased by 20, 20, 10, 20, 26 and 16%, respectively at the 0.5 g/l compared to the control. The percentage of IL and RWC of black cumin leaves was influenced by salinity and coHS-nSi treatments. The lowest IL and the highest RWC of leaves were found at 0.5 g/l coHS-nSi treatment at all salinity levels.
 
Conclusions:
The covering of nSi with HA in the presence of SA (coHS-nSi) investigated in laboratory conditions based on the carbon adsorption on nSi. The adsorption rate increased with increment of HA concentration and contact time. The outcome indicated that the maximum adsorption of carbon with nSi was 111.9 mgC/g. The diameter of nSi did not change significantly during the experiment according to micrograph made with Transmission Electron Microscopy. The results illustrated that application of 0.5 g / L coHS-nSi significantly increased biomass dry weight, grain yield, harvest index and the number of mature capsule in black cumin at salinity of 5 dS/m. Moreover, the application of coated nanoparticles not only increases the strength of cell wall but also increased uptake of nitrogen, potassium and magnesium. Therefore, it is concluded that coating of nSi with HA in the presence of SA(coHS-nSi), make a reduction to the amount and frequency of its usage and increase the salinity tolerance by improving the quantity and quality of black cumin.

کلیدواژه‌ها [English]

  • Humic acid
  • Medicinal plants
  • Coated nanoparticles
Aghaeifard, F., Babalar, M., Fallahi, E. and Ahmadi, A. (2015). Influence of humicacid   and salicylic acid         on                     yield, fruit quality and leaf mineral elements of strawberry (Fragaria ananassa Duch.) cv. camarosa. Journal of Plant              Nutrition, 39(13): 1821-1829. https://doi.org/10.1080/01904167.2015.1088023                                                                 
Barros, T. C., De Mello Prado, R., Garcia Roque, C., Ribeiro Barzotto, G. and Wassolowski, C. R. (2018). Silicon and salicylic acid promote different responses in legume plants. Journal of Plant Nutrition, 41: 2116-2125. https://doi.org/10.1080/01904167.2018.1497177                                                                                                                       
Davazdah Imami, S. and Majnoon, H. (2014). The Cultivation And Production of Some Spice And Medicinal Plants (third edition). Tehran University Press, Tehran, PP. 1-300(In Persian).                                                                                                           
El-Tayeb, M. A. (2005). Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul, 45: 215-224. https://doi.org/10.1007/s10725-005-4928-1                                                                                                                
Forgac, L. and Czimbalmos, R. (2011). The applied soil protective cultivation system-a method to reduce and prevent the soil degradation processes. Novenytermeles, 60: 279-282. https://www.cabidigitallibrary.org/doi/full/10.5555/20113086334  
Gad El-Hak, S. H., Ahmed, A. M. and Moustafa, Y. M. M. (2012). Effect of foliar application with two antioxidants and humic acid on growth, yield and yield components of peas (Pisum sativum L.). Journal of Horticultural Science and Ornamental Plants, 4 (3): 318-328. DOI:10.5829/idosi.jhsop.2012.4.3.262                                                                                                                 
Gunes, A., Inal, A. and Alpaslan, M. (2005). Effects of exogenously applied salicylic acid on the induction of multiple stress tolerance and mineral nutrition in maize (Zea mays L.). Archives Agronomy Soil Science, 51: 687-695. https://doi.org/10.1080/03650340500336075                                                                                                                              
Haghighia, M. and Pessarakli, M. (2013). Influence of silicon and nano-silicon on salinity tolerance of cherrytomatoes (Solanum lycopersicum L.) at early growth stage. Scientia Horticulturae, 161: 111-117. https://doi.org/10.1016/j.scienta.2013.06.034                                                                                                                                                                                                               
Hoagland, D. R. and Arnon, D. I. (1950). The waterculture for growing plants without soil. California Agriculture Experimental Statistics Circular.                                                                                                                                                                              
Horvath, E., Szalai, G. and Janda, T. (2007). Induction of Abiotic Stress Tolerance by Salicylic Acid Signaling. Journal of Plant Growth Regulation, 26(3): 290- 300. https://doi.org/10.1007/s00344-007-9017-4                                                              
Hyam, R. and Pankhurst, R. (1995). Plants and their names. Oxford University Press.                                                              
Kalteh, M., Alipour, Z. T., Ashraf, S., Marashi-A, M. and Falah-N, A. (2014). Effect of silica Nanoparticles on Basil (Ocimum basilicum) Under Salinity Stress. Journal of Chemical Health Risks, 4(3): 49 -55. https://www.jchr.org/index.php/JCHR/article/view/408                                                                                                            
Kaya C., Kirnak H., Higgs D. and Saltali K. (2002). Supplementary calcium enhances plant growth at fruit yield in strawberry cultivars grown at high (NaCl) salinity. J. Scientia Horticulturae, 93: 65-74.
https://doi.org/10.1016/S0304-4238(01)00313-2                                                                                                                        
Kaya, M. D., Okci, G., Atak, M., Cikili, Y. and Kolsarici, O. (2006). Seed treatment to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). European Journal of Agronomy, 24: 291- 295. https://doi.org/10.1016/j.eja.2005.08.001                                                                                                                                     
Khalid, A. (2015). Seed yield, fixed oil, fatty acids and nutrient content of nigella sativa L. cultivated under salt stress conditions. Journal of Agronomy, 14 (4): 241-246. https://doi.org/10.3923/ja.2015.241.246                                                                
Khattak, R. A., Haroon, K. and Muhammad, D. (2013). Mechanism(s) of humic acid induced beneficial effects in salt affected soils. Scientific Research and Essays - Academic Journal, 8: 932-939. http://www.academicjournals.org/SRE
Liang, L., Luo, L. and Zhang, S. (2011). Adsorption and desorption of humic and fulvic acids on SiO2 particles at nano and micro-scales. Colloids and Surfaces A: Physicochem English Aspects, 384: 126- 130. https://doi.org/10.1016/j.colsurfa.2011.03.045
Lotfi, R., Ghassemi-Golezani, K. and Najafi, N. (2018). Grain filling and yield of mung bean affected by salicylic acid and silicon under salt stress. Journal of Plant Nutrition. https://doi.org/10.1080/01904167.2018.1457686
Mahmoudi, M., Samavat, S., Mostafavi, M., Khalighi, A. and Cherati, A. (2013). The effects of proline and humic acid on quantitative properties of kiwifruit. International Research Journal Applied and Basic Science, 6 (8): 1117-1119. https://www.aensiweb.com/old/jasa/rjfh/2014/9-12.pdf
Metwally, A., Finkemeier, I., Georgi, M. and Dietz, K. J. (2003). Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiology, 132(1): 272-281. https://doi.org/10.1104/pp.102.018457
Mishra, A. and Choudhuri, M. A. (1999). Effects of salicylic acid on heavy metal induced membrane deterioration mediated by lipoxygenase in rice. Biologia Plantarum, 42: 409-415. https://doi.org/10.1023/A:1002469303670
Naseri M, Aroei H, Nemati S H, Kafi M. (2011). Effect of Different Levels of Salinity and Silicon on Productivity of Mass. Masses of Sodium and Potassium in Aerial Plant of Fenugreek. Journal of Soil and Water, 26(2):508-514.(In Persian). https://www.sid.ir/paper/141344/en
Nazar, R., Iqbal, N., Syeed S. and Khan, N. A. (2011). Salicylic acid alleviates decreases in photosynthesis under salt                 stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. Journal Plant Physiology, 168: 807-815. https://doi.org/10.1016/j.jplph.2010.11.001
Pirasteh-Anosheh, H., Emam, Y., Ashraf, M. and Foolad, M. R. (2012). Exogenous application of salicylic acid and       chlormequat chloride alleviates negative effects of drought stress in wheat. Advanced Studies in Biology, 11 (4): 501-   520. https://www.academia.edu/download/106053571/fooladASB9-12-2012.pdf.
Pirasteh-Anosheh, H., Rosta, M. J. and Emam, Y. (2015). Different methods of crop treatment with salicylic acid in salinity research. National Center of Yazd Salinity Researchm 1-20.( In Persian).
Raghara, H. & Mousavi, S. G. H. (2018). The effect of drought stress and application of humic and salicylic acid on physiological traits, yield and yield components of corn (Zea mays L.). Journal of Plant Environmental Physiology, 13(50), 87-101. (in Persian). https://journals.iau.ir/article_692027.html
Rea, R. S., Islam, M. R., Rahman, M. M., Nath, B. & Mix, K. (2022). Growth, nutrient accumulation and drought tolerance in crop plants with silicon application. A Review. Sustainability, 14, 4525.
https://doi.org/10.3390/su14084525
Rezaei, C. I. and Pirzad, A. (2014). Effect of Salicylic Acid on Yield, Yield Components and Black Sea Oil (Nigella sativa L.) in low water stress conditions. Iranian Journal of Field Crops Research, 12(3), 427- 37. ( In Persian).
Said-Alahl, H. A. H. and Omer, E. A. (2011). Medicinal and aromatic plants production under salt stress. A review, Herba Polonica, 57 (1): 72-86. https://www.researchgate.net/publication/356987140
Sairam, R. K. and Tyagi, A. (2004). Physiology and molecular biology of salinity stress tolerance in plants. Current Science, 86: 407-421. doi: 10.1007/1-4020-4225-6
Shaaban, M., Abid, M. and Abou-Shanab, R. A. I. (2013). Amelioration of salt affected soils in rice paddy system by application of organic and inorganic amendments. Plant Soil Environment, 59: 227-233.
https://doi.org/10.17221/881/2012-PSE
Shokri, S., Hooshmand, A., Golabi3, M., Alemzadeansari, N. and Struve, D. (2012). Effect of Silica Nanoparticles on Yield of Cucumber (Cucumis sativus L.) in Ahvaz region. Journal of Agricultural Knowledge and Sustainable Production, 32(1), 292-297. (In Persian). doi:10.22034/saps.2021.44312.2624
Simaei, M., Khavari-Nejad, R. A. and Bernard, F. (2012). Exogenous application of salicylic acid and     nitric oxide on the ionic contents and enzymatic activities in nacl-stressed soybean plants. American Journal of Plant Sciences, 3: 1495-1503. https://doi.org/10.4236/ajps.2012.310180