مقایسه اثرات زیست‌محیطی کشت گوجه‌فرنگی به دو صورت گلخانه‌ای و کشت روباز با استفاده از ارزیابی چرخه حیات در شهرستان نهاوند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

2 استادیار، گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

3 دانشیار، گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

4 استادیار، پژوهش بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان همدان، سازمان تحقیقات، آموزش و ترویج کشاورزی، همدان، ایران

چکیده

آلودگی‌های زیست‌محیطی از مهم‌ترین چالش‌های جامعه انسانی در قرن حاضر است. روش ارزیابی چرخه حیات از روش‌های جامع ارزیابی اثرات زیست‌محیطی می‌باشد. در این پژوهش به ارزیابی اثرات زیست‌محیطی کشت گوجه‌فرنگی به دو صورت کشت روباز و گلخانه‌ای در استان همدان شهرستان نهاوند با استفاده از نرم‌افزار سیما پرو پرداخته‌شد. نتایج این پژوهش بر اساس یک تن گوجه‌فرنگی مشخص گردید.  اساسی ­ترین عوامل در میزان تولید گوجه‌فرنگی در دو نوع کشت گلخانه‌ای و روباز در طی یک دوره یک‌ساله به‌کارگیری ماشین‌­آلات کشاورزی مورد استفاده، کود نیتروژنه و هم‌چنین سوخت دیزل استفاده شده در دو نوع کشت گوجه‌فرنگی بوده‌است. بر اساس نتایج به‌دست‌آمده در این پژوهش عامل اصلی در شاخص­های زیست‌­محیطی کود نیتروژنه بود. مقدار شاخص گرمایش جهانی در تولید یک تن گوجه‌فرنگی روباز 94.4 کیلوگرم معادل CO2 و در کشت گلخانه‌ای نیز 107 کیلوگرم  CO2 محاسبه شد که بیش‌ترین سهم این فرایند در استفاده بیش‌تر کو­دهای شیمیایی محاسبه شد. میزان شاخص اوتریفیکاسیون در پژوهش انجام شده در کشت روباز 0.00378 کیلوگرم و درکشت گلخانه‌ای 0.00512 کیلوگرم معادل PO4 برآورد شد، که مصرف آفت­‌کش‌­ها و سوخت دیزل سهم بیش‌تری در این شاخص داشتند. در شاخص تخریب لایه ازون برای یک تن گوجه‌فرنگی روباز 6- 4.52e و در کشت گلخانه‌ای 6- 7.39e کیلوگرم CFC-11eq محاسبه شد که در آن استفاده از سوخت دیزل اثر زیادتری بر محیط­زیست داشت. با جایگزین کردن تراکتورهای فرسوده با تراکتورهای جدید می‌توان انتشار آلاینده­های NOX و SOX ناشی از احتراق سوخت دیزل را کاهش داده و باعث کاهش اثرات زیست محیطی ناشی آن شد. بهبود عملکرد زیست­محیطی تولید گوجه فرنگی بصورت کشت روباز یا جایگزینی آن با تولید بصورت گلخانه‌­ای باید در نظر گرفته شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparing the Environmental Effects of Tomato Cultivation in Both Greenhouse and Open Fields Using Life Cycle Assessment (LCA) in Nahavand City

نویسندگان [English]

  • Mohsen Moafi 1
  • Behdad Shadidi 2
  • Hosein Haji Agha Alizade 3
  • Seyed Moinuddin Rezvani 4
1 MSc Graduate Student, Assistant , Department of Biosystems Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
2 Assistant Professor, Department of Biosystems Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
3 Associate Professor, Department of Biosystems Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
4 Assistant Professor of Research, Agricultural Engineering Research Department, Hamedan Agricultural and Natural Resources Research and Education Center, AREEO, Hamedan, Iran
چکیده [English]

Introduction
The agricultural sector is the source of major environmental contamination. Recent studies conducted in the US have shown that the agricultural sector is responsible for 6.4% of greenhouse gas emissions. Because of its closer ties to the environment than other sectors of the economy, as well as because of the extensive use of chemical fertilizers and other chemicals like pesticides, agriculture is regarded as one of the major sources of environmental pollution. The extensive use of chemical pesticides and fertilizers, as well as the absence of suitable and workable techniques for the best possible use of chemical fertilizers, are the main causes of the pollution produced by agricultural activities. It has been determined that the energy consumption and greenhouse gas emissions of the food production system vary greatly between its sectors. Along the production chain, there are good chances to lessen environmental impacts. Food production requires an understanding of energy consumption and emissions of pollutants. However, there aren't many publications comparing and analyzing the life cycle assessment of outdoor and greenhouse tomato growing. The environmental impacts of cultivating tomatoes in two different types of greenhouses and open field cultivation are thus compared using life cycle assessment (LCA) in Nahavand city in accordance with the significance of LCA evaluation in this study.
 
Material and Methods
In Nahavand City, greenhouses and open-field cultivation were used to gather the data required for tomato output in a single growing season. Information was gathered for this study via questionnaires, interviews, document and library investigations, and database utilization. The life cycle assessment approach was used in this study to analyze the effect categories using consumption inputs, such as diesel fuel, nitrogen, potash, and phosphate fertilizers, as well as animal manures (cow, sheep, and chicken). After sorting and categorizing, the data was entered into the Sima Pro version 9.1 program to assess the environmental effects of tomatoes. The assessments were conducted using the Impact2002 technique, and the results were calculated based on specific units.
 
Results and Discussion
With a general review of the inputs for the production of tomato products in both open field and greenhouse cultivation, it can be found that in  open field cultivation, nitrogen fertilizer has the largest share on 5 environmental indicators, including Global warming, Aquatic acidification, Terrestrial acid/nutri, Aquatic ecotoxicity and non-carcinogenic is one of the most important inputs affecting environmental indicators. To control and reduce the above indicators, it is possible to reduce them by reducing the use of nitrogen fertilizers. In greenhouse cultivation, Nitrogen fertilizer has had the largest share on 3 environmental indicators.After nitrogen fertilizer, diesel fuel is another important input in influencing environmental indicators. In greenhouse cultivation, diesel fuel has the largest share on 4 environmental indicators, including Aquatic eutrophication, Ozone layer depletion, non-renewable energy and Ionizing radiation, and in open cultivation, it has the largest share on 3 ozone layer environmental indicators. By replacing old tractors with new tractors, the emission of NOX and SOX pollutants caused by the combustion of diesel fuel can be reduced and the resulting environmental effects can be reduced. In the other part, the results of the study revealed that the highest amount of environmental destruction was due to fertilizers and the consumption of diesel fuel for the operation of machinery, which caused more destruction.
 
Conclusions
This research was conducted in order to evaluate the life cycle assessment of tomato production in open field and greenhouse cultivation, using Sima Pro software. The results showed that greenhouse cultivation has more environmental effects compared to open field cultivation. Nitrogen fertilizer and diesel fuel used in the production systems had the greatest impact on the environmental indicators. By replacing old tractors with new tractors, the emission of NOX and SOX pollutants caused by the combustion of diesel fuel can be reduced and the resulting environmental effects can be reduced. Also, reducing the use of chemical fertilizers, especially nitrogen fertilizers and pesticides will improve the environmental effects of tomato production. Improving the environmental performance of tomato production in open field or replacing it with greenhouse production should be considered.

کلیدواژه‌ها [English]

  • Global warming
  • Sima Pro software
  • Diesel fuel
  • Utrification index
Aazami, M., Ahadnejad Reveshty, M., & Tohidloo, S. (2018). Zoning Agricultural Development of the Cities in Hamedan Province. Regional Planning8(29), 53-64. https://dorl.net/dor/20.1001.1.22516735.1397.8.29.5.3
Bogoski, M. S. & McCormick, F. (1993). Proteins regulating Ras and its relatives. Nature, 366, 643-654. https://doi.org/10.1038/366643a0
Bolliger, R. & Bauer, C. (2007). Wasserkraft. Sachbilanzen von Energiesystemen. Final report No. 6 ecoinvent data v2. 0. Volume: 6. Swiss Centre for LCI, PSI. Dübendorf and Villigen, CH.
Ebrahimi Sarindizaj, E. & Zarghami, M. (2018). Comparing effect of restoration policies under climate change by using system dynamics; case study Urmia lake ecosystem, Iran-Water Resources Research, 13(4), 184-189. (In Persian)
Faist Emmenegger, M., Heck, T., Jungbluth, N. & Tuchschmid, M. (2007). Erdgas. Sachbilanzen von Energiesystemen: Grundlagen für den ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen für die Schweiz.
FAO, (2020). Food and Agriculture Organization, Statistics: FAOSTAT Agriculture. http://faostat3.fao.org.
Fathi, R., Kheiralipour, K. & Azizpanah, A. (2019). Assessment of the pattern of energy consumption in dryland rape production and its environmental effects in Ilam province.
Finnveden, G. & Potting, J. (1999). Eutrophication as an impact category. Int J LCA; 4, 311-314. https://doi.org/10.1007/BF02978518
Garrigues, E., Corson, M. S., Angers, D. A., van der Werf, H. M. & Walter, C. (2012). Soil quality in life cycle assessment: towards development of an indicator. Ecological Indicators, 18, 434-442. https://doi.org/10.1016/j.ecolind.2011.12.014
Gasol, C. M., Gabarrell, X., Anton, A., Rigola, M., Carrasco, J., Ciria, P., Solano, M. L. & Rieradevall, J. (2007). Life cycle assessment of a Brassica carinata bioenergy cropping system in southern Europe. Biomass and Bioenergy, 31(8), 543-555. https://doi.org/10.1016/j.biombioe.2007.01.026
Ghosh, N. (2004). Reducing dependence on chemical fertilizers and its financial implications for farmers in India. Ecological Economics, 49(2), 149-162. https://doi.org/10.1016/j.ecolecon.2004.03.016
Goebes, M. D., Strader, R. & Davidson, C. (2003). An ammonia emission inventory for fertilizer application in the United States. Atmospheric Environment, 37(18), 2539-2550. https://doi.org/10.1016/S1352-2310(03)00129-8
Iriarte, A., Rieradevall, J. & Gabarrell, X. (2010). Life cycle assessment of sunflower and rapeseed as energy crops under Chilean conditions. Journal of Cleaner Production, 18(4), 336-345. https://doi.org/10.1016/j.jclepro.2009.11.004
ISO (2006) ʻʻISO 14040ʼʼ Environmental Management Life Cycle Assessment Principles and Framework.
Kargari, N. & Mastouri, R. (2011). Effect of nuclear power on CO2 emission from power plant sector in Iran. Environmental Science and Pollution Research, 18, 116-122. https://doi.org/10.1007/s11356-010-0402-3
Khoshnevisan, B., Rafiee, S. & Mousazadeh, H. (2013). Environmental impact assessment of open field and greenhouse strawberry production. European Journal of Agronomy, 50, 29-37. https://doi.org/10.1016/j.eja.2013.05.003
Khoshnevisan, B., Rafiee, S., Omid, M., Mousazadeh, H. & Clark, S. (2014). Environmental impact assessment of tomato and cucumber cultivation in greenhouses using life cycle assessment and adaptive neuro-fuzzy inference system. Journal of Cleaner Production, 73, 183-192. https://doi.org/10.1016/j.jclepro.2013.09.057
Klein, D. (2006). N2O emissions from managed soils, and CO2 emissions from lime and urea application. (No Title), 1.
Maarefi, T., Ebrahimian, H., Dehghanisanij, H., Sharifi, M., & Delbaz, R. (2022). Life cycle assessment for major agricultural crops and different irrigation systems around Lake Urmia. Iranian Journal of Irrigation & Drainage16(3), 624-638.
Naseer, M., Persson, T., Hjelkrem, A. G. R., Ruoff, P. & Verheul, M. J. (2022). Life cycle assessment of tomato production for different production strategies in Norway. Journal of Cleaner Production, 372, 133659. https://doi.org/10.1016/j.jclepro.2022.133659
Nemecek, T., Kägi, T. & Blaser, S. (2007). Life cycle inventories of agricultural production systems. Final Report Ecoinvent, 2(15), 1-360.
Payen, S., Basset-Mens, C. & Perret, S. (2015). LCA of local and imported tomato: an energy and water trade-off. Journal of Cleaner Production, 87, 139-148. https://doi.org/10.1016/j.jclepro.2014.10.007
Prasad, S., Singh, A., Korres, N. E., Rathore, D., Sevda, S. & Pant, D. (2020). Sustainable utilization of crop residues for energy generation: A life cycle assessment (LCA) perspective. Bioresource Technology, 303, 122964. https://doi.org/10.1016/j.biortech.2020.122964
Safari, J., Khoramivafa, M., Ramedani, Z., & Yousefi, M. (2023). Evaluation of Energy Indices and Environmental Impacts of Tomato Agroecosystems and Tomato Paste in Kermanshah Region, using a Life Cycle Approach. Iranian Journal of Applied Ecology11(4), 33-48. http://dorl.net/dor/20.1001.1.24763128.1401.11.4.3.1
Shahmohammadi, A., Veisi, H., khoshbakht, K., Mahdavi Damghani, A. & Soltani, E. Life cycle assessment of potato production semi-mechanized method in Iran: A case study of Markazi province, Iranian Biosystem Engineering, 47(4), 659-666. (In Persian). https://doi.org/10.22059/ijbse.2017.60260
Vafabakhsh, J. & Mohammadzadeh, A. (2019). Energy flow and GHG emissions in major field and horticultural crop production systems (Case study: Sharif Abad plain). Journal of Agroecology, 11(2), 365-382.
Zarei, M. J., Kazemi, N., & Marzban, A. (2019). Life cycle environmental impacts of cucumber and tomato production in open-field and greenhouse. Journal of the Saudi Society of Agricultural Sciences, 18(3), 249-255. https://doi.org/10.1016/j.jssas.2017.07.001
Zubaidi, T. & Ajili, A. (2013) Effects of agriculture on the environment, The Second National Conference On Sustainable Agriculture and Natural Resources, Tehran, 9 pages. https://civilica.com/doc/309731.