اثر تنش سرما بر برخی صفات فیزیولوژیکی و بیوشیمیایی در جمعیت‌های مختلف نرگس شیراز (Narcissus tazetta)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی منابع طبیعی و محیط زیست، دانشگاه بیرجند، بیرجند، ایران

2 دانشجوی سابق کارشناسی ارشد، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی منابع طبیعی و محیط زیست، دانشگاه بیرجند، بیرجند، ایران

3 استادیار، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی منابع طبیعی و محیط زیست، دانشگاه بیرجند، بیرجند، ایران

4 مربی، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی منابع طبیعی و محیط زیست، دانشگاه بیرجند، بیرجند، ایران

چکیده

گل نرگس یکی از مهم‌‌ترین گیاهان زینتی و دارویی از خانواده‌ نرگسیان می‌باشد. سرما یکی از تنش‌های غیرزیستی است که همه‌ساله خسارات قابل‌توجهی را به اقتصاد و چرخه تولید کشور تحمیل می‌کند. آزمایشی به‌­صورت فاکتوریل  با دو فاکتور در قالب طرح کاملاٌ تصادفی با سه تکرار در دانشکده کشاورزی دانشگاه بیرجند طی سال‌های 99-1398 انجام شد. فاکتور A شامل 13 اکوتیپ‌ نرگس (آزادشهر، شهلای ‌شمال، شصت‌پر شمال، ‌شیراز یک، ‌شیراز دو، ‌یاسوج، کوچک‌عطری یاسوج، ‌طبس، خوسف یک، ‌خوسف‌ دو، ‌بهبهان‌ یک، ‌بهبهان‌ دو و ‌گچساران) و فاکتور B شامل چهار سطح دمایی (شاهد (دمای محیط)، مثبت پنج، صفر و منفی پنج درجه سانتی‌گراد) بود. صفات پتانسیل اسمزی، پرولین، مالون دی‌آلدئید، قندهای محلول، فنل و درصد سرمازدگی اندازه‌گیری شد. نتایج نشان‌داد که با کاهش دما کلیه صفات افزایش می‌یابند. پتانسیل اسمزی و پرولین مهم‌ترین صفات تأثیرگذار بر سرمازدگی بودند. اکوتیپ‌های یاسوج، طبس‌گلشن، شیراز یک، کوچک عطری یاسوج، شصت‌پر شمال و آزادشهر حساس‌، اکوتیپ‌های خوسف دو و گچساران مقاوم و اکوتیپ‌های شهلای شمال، شیراز دو، بهبهان دو، خوسف دو و بهبهان یک اکوتیپ‌هایی حد واسط در مقاومت به سرمازدگی شناخته شدند. به‌­طورکلی، اکوتیپ گچساران مقاوم‌ترین و اکوتیپ طبس‌گلشن حساس‌ترین اکوتیپ نسبت‌به سرمازدگی شناخته‌شد. توصیه می‌گردد که مقدار تنش در مراحل مختلف رشد گیاه بررسی و آنتی­اکسیدان­‌ها و متابولیت‌های دیگر نیز مدنظر قرار گیرد. محققینی که علاقمند به تحقیق در زمینه تنش سرما هستند، حتما اکوتیپ‌ها (گچساران مقاوم و طبس گلشن حساس) و صفات مهم‌ شناسایی‌شده (پتانسل اسمزی و پرولین) در این مطالعه را بیشتر مورد واکاوی قرار دهند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Cold Stress on Some Physiological Traits in Different Populations of Narcissus Tazetta

نویسندگان [English]

  • Mohammad Zabet 1
  • Forough Najafi 2
  • Zohreh Alizadeh 3
  • Masoud Khazaie 4
1 Associate Professor, Department of Plant Production and Genetics, Faculty of Agriculture Natural Resources and Environment ,University of Birjand, Birjand, Iran
2 Former Master of Student, Department of Plant Production and Genetics, Faculty of Agriculture Natural Resources and Environment ,University of Birjand, Birjand, Iran
3 Assistant Professor. Department of Plant Production and Genetics, Faculty of Agriculture Natural Resources and Environment ,University of Birjand, Birjand, Iran
4 Instructor, Department of Plant Production and Genetics, Faculty of Agriculture Natural Resources and Environment ,University of Birjand, Birjand, Iran
چکیده [English]

Introduction
Iran has a wealth of flowers and wild plants and has valuable genetic resources. The Narcissus flower, known as the Narcissus tazetta, is considered one of the most important ornamental and medicinal plants from the family of Narcissus tazetta in temperate regions. The cold is one of the abiotic stresses that cause significant damage to the country's economy and production cycle every year, and most plants in temperate regions cannot successfully withstand freezing temperatures. To obtain a resistant plant, the most effective approach is to investigate and explore the genetic resource of plants that are cold-tolerant. The objective of this study was to investigate the cold tolerance of various populations collected from various parts of Iran.
 
Materials and methods
This research was carried out in the molecular plant breeding laboratory and greenhouse of the Plant Production and Genetics Department, Faculty of Natural Resources and Environment, University of Birjand during 2018-2019. The factor A was included 13 narcissus populations (Azadshahr, Shehlai Shomal, Shastpar Shomal, Shiraz 1, Shiraz 2, Yasouj, Yasouj small perfume, Tabase Golshan, Khusf 1, Khusf 2, Behbahan 1, Behbahan 2 and Gachsaran) and the factor B was included four temperature levels (environment temperature= control, +5, zero and -5 °C). Five leaves were taken from each pot and placed in a refrigerator at temperatures +5°C, 0°C, and -5°C for 5 hours. The measured traits included relative leaf water content, ion leakage, amount of chlorophyll a (mg/gr FW), chlorophyll b (mg/gr FW), total chlorophyll (mg/gr FW), carotenoid (mg/gr FW), chlorophyll a / total chlorophyll, total chlorophyll/carotenoid and percent of chilling stress. Data analysis was performed using the statistical software SAS9.4, Excelv2010, and SPSSv26. Mean comparisons were conducted using Duncan's Multiple Range test, correlation analysis by the Pearson method, and cluster analysis based on the mean traits in both stress and normal environments. It is worth noting that the mean values for the treatments at +5°C, 0°C, and -5°C were considered as stress conditions, while environment temperature was regarded as the normal environment.
 
Results and discussion
The analysis of variance showed that there was a significant difference in all traits except for the amount of phenol and malondialdehyde among different archetypes. The temperature had a significant effect on all traits, and population-temperature interactions were significant in all traits except malondialdehyde and total soluble sugars. The highest value of osmotic potential (in the negative direction), the amount of phenol, malondialdehyde, proline and total soluble sugars in treatment 4 (-5°C) and the lowest value of these traits in treatment 1 (the control treatment or environment temperature, 22°C) were observed, respectively. The highest and the lowest of chilling stress percent were observed during February and December, respectively. In other words, with the decrease in temperature, the amount of the aforementioned traits and the Chilling stress percent increased. The correlation and regression analysis revealed that the proline trait was the most significant factor that contributed to Chilling stress in both normal and stress conditions. The cluster analysis grouped the populations in three clusters in both normal (environment temperature) and stress (three temperature treatments +5, zero and -5) conditions. The populations Yasouj, Tabase Golshan, Shiraz1, small aromatic of Yasouj, Shastpar Shomal, Azadshahr and Khosuf1, Gachsaran, and Shehlai Shomal, Shiraz2, Behbahan2, Khosf2, Behbahan1 were placed in the first, second and third clusters, respectively. Cluster analysis revealed that populations with similar chilling stress  percent were clustered together, and geographical proximity and closeness were not related to this issue.
 
Conclusion
In this study, with decreasing temperature, amounts of evaluated traits increased, which was known as one of the methods of cold tolerance in narcissus. The proline trait was more important than other traits, and therefore its measurement is suggested in future studies related to cold in Narcissus. In the context of cold resistance, the populations Khusf 1, and Gachsaran were the best and the populations Yasouj, Tabase-Golshan, Shiraz1, small aromatic Yasouj, Shastpar Shomal, and Azadshahr were the worst populations, respectively. The populations of Shehlai Shomal, Shiraz 2, Behbahan 2, Khusf 2 and Behbahan 1 were recognized as intermediate populations. Based on all analyses, the Gachsaran population was the most resistant population, while the Tabase-Golshan population was the most susceptible population in this investigation. The examination of populations showed that there was enough diversity among these populations, and the cold resistance of populations varied across regions. Due to the increasing importance of medicinal plants and ornamental flowers and climate variability, it is recommended that this test be done in different years, temperatures and environments to determine the superior population. Furthermore, the population Gachsaran (resistant) and Tabase-Golshan (sensitive) and the traits osmotic potential and proline (important identified in this study) to be further analyzed.

کلیدواژه‌ها [English]

  • Osmotic Potential
  • Proline
  • Soluble Sugars
  • Malondialdehyde
Abbaszadeh, B., Sharifi Ashourabadi, E., Lebaschi, M. H., Naderi Haji Bagherkandi, M. and  Moghadami, F. (2007). The effect of drought stress on proline contents, soluble sugars, chlorophyll and relative water contents of Balm (Melissa officinalis L.). Iranian Journal of Medicinal and Aromatic Plants, 23 (4): 504-513. https://doi.org/10.22092/ijmapr.2008.10090. (In Persian with English abstract).
Ahmadi, A., Yazdi Samadi, B. and  Zargarnataj, J. (2005). Physiological responsed of Wheat seedlings to low temperatures. Journal of Agricultural Knowledge, 15 (2): 27-43. (In Persian with English abstract).
Aki, F., Kazemitabar, S. K., Hashemi, S. H. and  Najafi Zarini, H. (2016). Evaluated of effect of cold stress on proline, malondialdehyde and photosynthetic pigments in seedling stage of Sesame (Sesamum indicum L.) genotypes. Journal of Crop Breeding, 8 (18): 166-175. https://doi.org/10.29252/jcb.8.18.166.
Asadi-Sanam, S., Zavareh, M., Pirdashti, H., sefidcan, F. and  Nematzadeh, G. (2015). Evaluation of biochemical and physiological responses of purple coneflower (Echinacea purpurea L.) medicinal plant to low temperature stress. Plant Process and Function, 4 (12) :11-28. https://doi.org/20.1001.1.23222727.1394.4.12.8.8. (In Persian with English abstract).
Ashraf, M. and  Foolad, M. R. (2007). Role of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59: 206-216. https://doi.org/10.1016/j.envexpbot.2005.12.006.
Bates, L., Waldren, R. and  Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39 (1): 205-207. https://doi.org/10.1007/BF00018060.
Bettaieb, I., Bourgou, S., Aidi Wannes, W., Hamrouni, I., Limam, F. and  Marzouk, B. (2010). Essential oils, phenolics, and antioxidant activities of different parts of Cumin (Cuminum cyminum L.). Journal of Agricultural and Food Chemistry, 58 (19): 10410-10418. https://doi.org/10.1021/jf102248j. PMid:20809647.
Bhattacharjee, S. and  Mukherjee, A. K. (2002). Salt stress induced cytosolute accumulation, antioxidant response and membrane deterioration in three rice cultivars during early germination. Seed Science and Technology, 30: 279287. https://api.semanticscholar.org/CorpusID:89234851.
Cao, Y. Y., Tao Yang, M., Li, X., Qing, Z., Juan, X., Ji, W. and  Bai, G. (2014). Exogenous sucrose increases chilling tolerance in cucumber seedlings by modulating antioxidant enzyme activity and regulating proline and soluble sugar contents. Scientia Horticulturae, 179: 67-77. https://doi.org/10.1016/j.scienta.2014.09.016
Cansev, A., Gulen, H., Celik, G. and  Eris, A. (2012). Alterations in total phenolic content and antioxidant capacity in response to low temperatures in Olive (Olea europaea L. cv. Gemlik). Plant Archives, 12: 489-494.
Curtis, I. S. (2003). The noble radish: past, present and future. Trends in Plant Science, 8 (7): 305-307.
https://doi.org/10.1016/S1360-1385(03)00127-4. PMid:12878009
Delauney, A. J. and  Verma, D. P. S. (1993). Proline biosynthesis and osmoregulation in plants. The plant journal, 4 (2): 215-223. https://doi.org/10.1046/j.1365-313X.1993.04020215.x
Distelbarth, H., Neagele, T. and  Heyer, A. G. (2012). Responses of antioxidant enzymes to cold and high light are not correlated to freezing tolerance in natural accessions of Arabidopsis thaliana. Plant Biology, 15 (6): 982-990. https://doi.org/10.1111/j.1438-8677.2012.00718.x. PMid:23578291
Ebrahimi, A., Hatamzadeh, A. and  Hassanpour Asil, M. (2014). Evaluation effect of low temperature on rowth and flowering processes of ornamental bulbous plants. In: proceeding of the First Electronic Congress of New Findings in the Environment and Agricultural Ecosystems, Tehran, Iran.
Emami Bistgani, Z., Siadat, S. A., Bakhshandeh, A., Ghasemi Pirbalouti, A. and  Hashemi, M. (2017). Interactive effects of drought stress and chitosan application on physiological characteristics and essential oil yield of Thymus daenensis Celak. The Crop Journal, 5: 407-415. https://doi.org/10.1016/j.cj.2017.04.003. (In Persian with English abstract).
Faraji, S., Hadadinejad, M., Abdoosi, V., Basaki, T. and  Karami, S. (2020). Effects of drought stress on the phenol, flavonoid and cyanidin 3-glocoside content of juice and fruit yield in native pomegranate genotypes (Punica granatum L). Iranian Journal of Medicinal and Aromatic Plants, 35 (6): 889-901. https://doi.org/10.22092/ijmapr.2019.123934.2426. (In Persian with English abstract).
Gulen, H., Çetinkaya, C., Kadıoğlu, M., Kesici, M., Cansev, A. and  Eriş, E. (2008). Peroxidase activity and lipid peroxidation in Strawberry (Fragaria X ananassa) plants under low temperature. Journal of Biology and Environment Science, 2: 95-100.
Heath, B. and  Heath, B. (2001). Daffodils: for north american gardens. Bright Sky Press, 144p.
Heath, R. L. and  Packer, L. (1968). Photoperoxidation in isolated chloroplast, kinetics and stoichiometry of fatty acid peroxidation. Journal of Archives of Biochemistry and Biophysics. 125: 189-198.
https://doi.org/10.1016/0003-9861(68)90654-1. PMid:5655425
Heuer, B. (1994). Osmoregulatory role of proline in water-and salt -stressed plants. Handbook of Plant and Crop Stress. Marcel Dekker publication, New York.
Iranpak, N., Kalateh Jari, S. and  Kalantari, S. (2012). Effects of explant and plant growth regulators on callus induction and shoot formation in Narcissus tazetta L. Iranian Journal of Medicinal and Aromatic Plants, 28 (2): 356-369. https://doi.org/10.22092/ijmapr.2012.3052. (In Persian with English abstract).
Jafari, S. R., Manoochehri Kalantari, K. H. and  Ahmadi Mosave, E. S. (2007). The role of paclobutrazol on accumulation of antioxidant in tomato plants (Lycopersicum esculentom L.) under cold stress. Iranian Journal of Biology, 20 (3): 206-218. (In Persian with English abstract).
Joshi, S. C., Chandra, S. and  Palni, L. M. S. (2007). Differences in photosynthetic characteristics and accumulation of osmoprotectants in saplings of evergreen plants grown inside and outside a glasshouse during the winter season. Photosynthetica, 45 (4): 594-600. https://doi.org/10.1007/s11099-007-0102-5
Kamenetsky, R. and  Okubo, H. (2013).Ornamental geophytes: from basic science to sustainable production. CRC Press: Boca Raton, FL, USA, 578 p. https://doi.org/10.1201/b12881
Karimi, S., Abbaspour, H., Sinaki, J. M. and  Makarian, H. (2012). Effects of water deficit and chitosan spraying on osmotic adjustment and soluble protein of cultivars castor bean (Ricinus communis L.). Journal of Stress Physiology and Biochemistry, 8: 160-169.
Kerepesi, I., Bányai-Stefanovits, E. and  Galiba, G. (2004). Cold acclimation and abscisic acid induced alterations in carbohydrate content in calli of wheat genotypes differing in frost tolerance. Plant Physiology, 161 (1): 131-133. https://doi.org/10.1078/0176-1617-00766. PMid:15002675
Kexuan, T., XingLong, W., XiaoFen, S., ZhongXiang, D. and  Teixeira da Silva, J. (2006). Cold: a double-edged sword to plants. Floriculture, Ornamental and Plant Biotechnology, 102-107.
Khalafalla, M. S. and  Palzkill, D. A. (1990). Seasonal patterns of carbohydrates and proline in jojoba clones that differ in frost susceptibility. HortScience, 25 (1): 103-105. https://doi.org/10.21273/HORTSCI.25.1.103
Khorshidi, S. H., Davarynejad , G. H., Samiei, L. and  Moghaddam, M. (2016). Investigation the frost resistance of vegetative and reproductive buds of pear cultivars in Mashhad climate condition. Journal of horticulture science, 30 (3): 581 - 589. https://doi.org/10.22067/jhorts4.v30i3.50169
Kuznetsov, V. I. and  Shevykova, N. I. (1999). Proline under stress: Biological role, metabolism, and regulation. Russian Journal of Plant Physiology, 46: 274-287.
Le Gall, H., Philippe, F., Domon, J. M., Gillet, F., Pelloux, J. and  Rayon, C. (2015). Cell wall metabolism in response to abiotic stress. Plants, 4 (1):112-166. https://doi.org/10.3390/plants4010112. PMid:27135320. PMCid:PMC4844334.
Levitt, J., 1980. Responses of plant to environmental stress. Water, radiation, salt and other stresses. Academic Press, New York.
Li, X. F., Shao, X. H., Deng, X. J., Wang, Y., Zhang, X. P., Jia, L.Y. and  Xu, L. (2012). Necessity of high temperature for the dormancy release of Narcissus tazetta var. chinensis. Journal of plant physiology. 169 (14): 1340-1347. https://doi.org/10.1016/j.jplph.2012.05.017. PMid:22795676.
Li, Q. Y., Niu, H. B., Yin, J., Wang, M. B., Shao, H. B., Deng, D. Z., Chen, X. X., Ren, J. P. and  Li, Y. C. (2008). Protective role of exogenous nitric oxide against oxidative stress induced by salt stress in barley (Hordeum vulgare). Colloids and Surfaces B: Biointerfaces, 56 (2): 220-225. https://doi.org/10.1016/j.colsurfb.2008.04.007.
PMid:18502620.
Ma, D., Sun, D., Wang, C., Li, Y. and  Guo, T. (2014). Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiology and Biochemistry, 80: 60-66. https://doi.org/10.1016/j.plaphy.2014.03.024. PMid:24727789.
Matysik, J., Bhalu, A. B. and  Mohnty, P. (2002). Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Current Science, 82 (5): 525-532.
Mocready, R., Guggolz, J., Silviera, V. and  Owens, H. (1950). Determination of starch and amylose in vegetables. Application to peas. Analytical Chemistry, 22 (9): 1156-1158. https://doi.org/10.1021/ac60045a016
Olennikov, D. N., Chirikova, N. K., Kashchenko, N. I., Gornosta, T. G., Selyutina, Y. I. and  Zilfikarov, I. N. (2017). Effect of low temperature cultivation on the phytochemical profile and bioactivity of arctic Plants: A case of Dracocephalum palmatum. International journal of Molecular Science, 1-29. https://doi.org/10.3390/ijms18122579. PMid:29189749. PMCid:PMC5751182.
Peterlunger, E., Siviloti, P. and  Colussi, V. (2005). Water stress and polyphenolic quality in 'Merlot' grapes. Acta horticulturae, 689: 293-300. https://doi.org/10.17660/ActaHortic.2005.689.34
Prasad, T. K., Anderson, M. D., Martin, B. A. and  Stewart, C. R. (1994). Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. The Plant Cell, 6: 65-74. https://doi.org/10.1105/tpc.6.1.65. PMid:12244221 PMCid:PMC160416.
Rahnama, A. (2019). Plant physiology. Puran Pazhohesh Publications, 399 p.
Salimi, M., Madahhosseini, S. H., Azari, A. and  Mohammadi Mirik, A. A. (2019). Effect of cold stress on some physiological characteristics and antioxidant systems in (Linum usitatissimum L.) genotypes at seedling stage. Journal of Plant Process and Function, 9 (33): 449-461. https://doi.org/20.1001.1.23222727.1398.8.33.4.4. (In Persian with English abstract).
Seppanen, M. M. (2000). Characterization of freezing tolerance in Solanum commersonii Dun with special reference to the relationship between freezing and oxidative stress. PhD Thesis, University of Helsinki, Helsinki, Finland.
Shih, C. H., Chu, H., Tang, L. K., Sakamoto, W., Maekawa, M., Chu, I. K., Wang, M. F. and  Lo, C. (2008). Functional characterization of key structural genes in rice flavonoid biosynthesis. Planta, 228: 1043-1054.
https://doi.org/10.1007/s00425-008-0806-1. PMid:18726614
Singleton, V. L. and  Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16 (3): 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
SKAJO. (2023). South Khorasan Agricultural Jihad Organization. Available at: www. https://kj-agrijahad.ir/pr/index.php.
Soleimani Aghdam, M., Asghari, M. R., Khorsandi, O., Moradbeygi, H., Mohammadkhani, N., Mohayeji, M. and  Hassanpouraghdam, M. B. (2014). Possible mechanisms of salicylic acid effects for alleviation of postharvest chilling injury on tomato fruit. Journal of Plant Research, 27 (2): 216-227.(In Persian with English abstract). https://doi.org/20.1001.1.23832592.1393.27.2.6.6
Soloklui, A. A. G., Ershadi, A. and  Fallahi, E. (2012). Evaluation of cold hardiness in seven Iranian ommercial pomegranate (Punica granatum L.) cultivars. HortScience, 47 (12): 1821-1825. https://doi.org/10.21273/HORTSCI.47.12.1821
Tabaei-Aghdael, R., Pearce, R.S. and  Harrison, P. (2003). Sugars regulaate cold-induced gene expression and freezing tolerance in barley culture. Journal of Experimental Botany, 54 (387):1565-1575. https://doi.org/10.1093/jxb/erg173. PMid:12730262
Tadjvar, Y., Fotouhi Ghazvini, R., Hamidoghli, Y. and  Sajedi, R.H. (2011). Physiological and biochemical responses of Page mandarin on citrange rootstock to low temperature stress. Journal of Plant Biology, 3 (9): 1-12. https://doi.org/20.1001.1.20088264.1390.3.9.2.2.
Wang, X., Fang, G., Li, Y., Ding, M., Gong, H. and  Li, Y. (2013). Differential antioxidant responses to cold stress in cell suspension cultures of two subspecies of rice. Plant Cell Tissue Organisms Culture, 113: 353-361. https://doi.org/10.1007/s11240-012-0273-z
Yadav, S.K. (2010). Cold stress tolerance mechanisms in plants. Agronomy for Sustainable Development, 30 (3): 515-527. https://doi.org/10.1051/agro/2009050
Young, R.H. (1977). The effect of rootstocks on citrus cold hardiness. President of the international society of citriculture, 2: 518-522. https://doi.org/10.1080/87559129.2021.1978093
Zeinanloo, A. and  Tajik, H. (2022).  Assessment of cold stress tolerance in the leaves of some olive (Olea europaea L.) cultivars. Seed and Plant, 38 (3): 323-338. https://doi.org/10.22092/spj.2023.360267.1278