اثر سالیسیلیک اسید بر جوانه‌زنی و رشد چمن فستوکا (Festuca rubra) و لولیوم (Lolium perenne) تحت شرایط تنش شوری

نوع مقاله: علمی - پژوهشی

نویسندگان

1 کارشناس ارشد علوم باغبانی، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه کردستان، سنندج

2 استادیار گروه علوم باغبانی دانشکده کشاورزی، دانشگاه کردستان، سنندج

چکیده

فستوکای قرمز (Festuca rubra) و لولیوم چندساله (Lolium perenne) از مهم‌ترین چمن­های فصل سرد هستند که به‌عنوان پوشش سبز در سراسر جهان استفاده می­شوند. بذرهای فستوکا و لولیوم به‌مدت 12 ساعت در آب مقطر (شاهد) و 100 میلی­گرم در لیتر SA خیسانیده شدند. بذرها در مخلوط خاکی نمکی شده با غلظت­های مختلف NaCl (0، 40، 80 و 120 میلی­مولار) کشت شدند. درصد و سرعت جوانه­زنی با افزایش سطوح شوری کاهش یافت. لولیوم نسبت به فستوکا تحمل بیشتری در مقابل شوری در مرحله جوانه­زنی داشت. طول ساقه در لولیوم نسبت به فستوکا در هر دو شرایط شوری و غیر­شوری بیشتر بود. طول ساقه در هر دو گونه در شرایط شوری کاهش یافت. وزن خشک هر دو گونه در شرایط شوری و غیر­شوری به‌وسیله کاربرد SA افزایش یافت. در نهایت اثرات منفی شوری بر روی رشد به‌وسیله کاربرد SA کاهش یافت. 

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Salicylic Acid on Red Fescue (Festuca rubra) and Perennial Ryegrass (Lolium perenne) Turfgrass Germination and Growth Under Salinity Stress

نویسندگان [English]

  • fardin nasri 1
  • naser ghaderi 2
چکیده [English]

Festucarubra and Lolium perenne are major cool-season turfgrasses which are used as turf grass around the world. Festuca and Lolium seeds were soaked for 12 h in distilled (Control) water and 100 mg l-1 SA. The seeds were sown in salinized soil mixture with 0, 40, 80 and 120 mM NaCl. The results showed that the seed germination percentage and germination velocity decreases significantly by increasing of salinity levels. Lolium was more tolerant than Festuca against salinity in germination stage. Stem length of Lolium was significantly higher than Festuca in saline and non-saline treatments. Stem length in both species were reduced under salinity conditions. Dry weights of both species were increased by salicylic acid application under saline and non-saline conditions. In conclusion, negative effects of salinity on growth were reduced by SA application.

کلیدواژه‌ها [English]

  • Salinity to lerance
  • Germination and tillering
  • Seedling growth
  • Cool-season turfgrasses
Alonso-Ramirez, A., Rodriguez,  D., Reyes, D., Jimenez, J. A. , Nicolas, G., Lopez-climent, M., Gomez-cadenas, A. and Nicolas, C. 2009. Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiology, 150: 1335-1344.

Ashraf, M. and Foolad, M. R. 2005. Pre sowing seed treatment -Ashotgun approach to improve germination, plant growth, and crop yield under saline and non saline conditions. Advances in Agronomy, 88: 223-265.

Basalah, m.o. 1991. Effect of salinity on seed germination and growth of sequash (Cucubita pepo L.) Arab Gulf Journal of Scientific Research, 9: 87-97.

Basra, S. M. A., Farooq, M., Wahid, A. and Khan, M. B. 2006. Rice Seed Invigoration by Hormonal and Vitamin Priming. Seed Science and Technology, 34: 775-80.

Bedi, S. and Dhingra, M. 2008. Stimulation of germination, emergence and seedling establishment in maize (Zea mays L.) at low temperature with salicylic acid. Environmental Ecology, 26 (1A): 313-317.

Borsani, M. O., Valpuesta, V. and Botella, M. A. 2001. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiology, 126:1024-1030.

Breen, C. M., Everson, C. and Rogers, K. 1997. Ecological studies on Sporobolus virginicus (L.) Kunth with particular reference to salinity and inundation. Hydrobiologia, 54: 135-140.

Chen, J., Cheng, Z. and Zhong, S. 2007. Effect of exogegenous salicylic acid on growth and H2O2- Metabolizing enzymes in rice seedlings lead stress. Journal of Environmental sciences, 19: 44-49.Dat, J. F., Lopez-delgado, H., Foyer, C. H. and Scott, I. M. 1998. Parallel changes in H2O2 and catalase during thermo-tolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiology, 116: 1351-1357.

Deef, H. E. 2007. Influence of salicylic acid on stress tolerance during seed germination of Triticum aestivum and Hordeum vulgare. Advances in Biological Research, 1: 40-48.

Ellis, R. A. AND Roberts, E.H. 1981. The quantification of ageing and survival in orthodox seeds. Seed Science and Technology, 9: 373-409.

El-tayeb, M. A. 2005. Response of barley grains to the interactive effect of salinity and salicylic acid. Journal of Plant Growth Regulation, 3: 215-224.

Foti, S., Cosentino, S. L., Patane, C. and Agosta, G. M. 2002. Effect of osmoconditioning upon seed germination of Sorghom (Sorghom Bicolor (L.) Moench) under low temperatures. Seed Science and Technology, 30: 521-533.

Fridudin, Q., Hayat, S. and Ahmad, A. 2003. Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea. Photosynthetica, 41:281-284.

Gunes, A., Inal, A., Alpaslan, M., Eraslan, F., BagcI, E. G. and Cicek, N. 2007. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology, 164: 728-736.

Gutierrez-Coronado, M. A., trejo-lopez, C. and laeque saavedra, A. 1998. Effects of salicylic acid on growth of roots and shoots in soybean. Plant Physiology and Biochemistry, 36: 653-665.

Greenway, H. and Munns, R. 1980. Mechanisms of salt tolerance in nonhalophytes. Annual Review of Plant Physiology, 31:149-190.

Hardegree, S. P. and Emmerich, W. E. 1990. Partitioning water potential and specific salt effects on seed germination of four grasses. Annals of Botany, 66: 587-595.

He, Y. L., Liu, Y. L., Chen, Q. and Bian, A. H. 2002. Thermotorerance related to antioxidation induced by salicylic acid and heat hardening in tall fescue seedlings. Journal of Plant Physiology, Molecular and Biology, 28: 89-95.

Jefferson, L. V. and Penachchio, M. 2003. Allelopathic effects of foliage extracts from four chenopodiacea species on seed germination. Journal of  Arid Environmental, 55: 275-285.

Kaya, C., Higgs, D., Ince, F., Amador,  B. M. , Cakir, A. and Sakar, E. 2003. Ameliorative effects of potassium phosphate on salt-stressed pepper and cucumber. Journal of Plant Nutrition, 26: 807-820.

Khan, W., Prithivir, A. J. B., and Smith, D. L. 2003. Photosynthetic responses of corn and soybean to foliar application of salicylates. Journal of Plant Physiology, 160: 485-492.

Khodary, S. E. A. 2004. Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt-stressed maize plants. Journal of Agricultural Biology, 6:5-8.

Nemeth, M., Janda, T.,  Horvath, E., Paldi, E. and Szalai, G. 2002. Exogenous salicylic acid increase polyamine content but may decrease drought tolerance in maize. Plant Science, 162: 569-574.

Noreen, S. and Ashraf, M. 2008. Alleviation of adverse effects of salt stress on sunflower (Helianthus annuus L.) by exogenous application of salicylic acid: growth and photosynthesis. Pak. J. Bot. 40:1657-1663.

Othman, Y., Karaki, G. A. , Tawaha, A. R. and Alhorani, A. 2006. Variation in Germination and Ion Uptakein Barley Genotypes Under Salinity conditions. Journal of Agricultur Science, 2:11-15.

Pardia, a.k. and das, a.b. 2005. Salt tolerance and salinity effects on plants: a review. Ecotox. Environ. Safe. 60:324-349.

popova, l. , pancheva, t. and uzonova,  A. 1997. Salicylic acid: properties, biosynthesis and physiological role. Plant Physiology, 23: 85-93.

Rajjou, L., Belghazi, M., Huguet, R., Robin, C., Moreau, A. , Job, C. and Job, D. 2006. Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiology, 141: 910-923.

Rao, M. V. and Davis, R. D. 1999. Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant Journal, 17: 603-614.

Sakhabutdinova, A. R., Fatkhutdinova, D. R., Bezrukova, M. V. and Shakirova, F. M. 2003. Salicylic acid prevents damaging action of stress factors on wheat plants. Bulgarian Journal of Plant Physioogy, 314-319.

Shakirova, F. M., Sakhabutdinova, A. R., Bezrukova, M. V., Fatkhutdinova, R. A., and Fatkhutdinova, D. R. 2003. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Science, 164: 317-322.

Shokohifard, G. , Sakagam, K.H. and Matsumoto, S. 1989. Effect of amending materials on growth of radish plant in salinized soil. J. Plant Nutr. 12: 1195-1294.

Shim, I. S. , Momose, Y., Yamamoto, A., Kim, D. W. and Usui, K. 2003. Inhibition of catalase activity by oxidative stress and its relationship to salicylic acid accumulation in plants. Plant Growth Regulator, 39: 285-292.

Singh, P.K. , Chaturvedi, V.K. and bose, B. 2010. Effects of salicylic acid on seedling growth and nitrogen metabolism in cucumber (Cucumis sativus L.). Journal of Stress Physiology and Biochemistry, 6: 102-113

Sleper D. A. and West C. P. 1996. Tall fescue. In: Moser L. E., Buxton D. R. and Casler M. D. eds. Cool-season forage grasses. Madison: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 471-502.

Stevens, J., Senaratna, T. and Sivasithamparam, K. 2006. Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): associated changes in gas exchange, water relations and membrane stabilisation. Plant Growth Regulator, 49: 77-83.

Szepesi, A., Csiszar, J., Bajkan, S., Gemes, K. and Horvath, F. 2005. Role of salicylic acid pre-treatment on the acclimation of tomato plants to salt and osmotic stress. Acta Biologica Szegediensis, 49: 123-125.

Waise, Y. 1972. Biology of Halophytes. Academic press, New York and London, 555pp.

Yildirim, e. , turan, m. and guvenc, i. 2008. Effect of foliar salicylic acid applications on growth, chlorophyll and mineral content of cucumber (Cucumis sativus L.) grown under salt stress. Journal of Plant Nutrition, 31:593-612.

Zare, M., Mehrabi Oladi, A. A. and Sharaf zadeh, Sh. 2006. Investigation of GA3 and Kinetin effects on Seed Germination and Seedling Growth of Wheat under Salinity Stress. Journal of Agricultural Sciences, 12: 855-865.

Zhang, S. G. and Klessig, D. F. 1997. Salicylic acid activates a 48-KD MAP kinase in tobacco. Plant and Cell Physiology, 9: 809-824.

Zhang,  S. G., Gao, J. Y. and Song, J. Z. 1999. Effect of salicylic acid and aspirin on wheat seed germination under salt stress. Plant Physiology. Communications, 35: 29-32.