تأثیر تلقیح دو‌ جانبه قارچ Piriformospora indica و باکتری‌ Azospirillum spp. بر برخی صفات فیزیولوژیکی، جذب عناصر و عملکرد دانه گندم تحت تنش شوری

نوع مقاله: علمی - پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد زراعت و اصلاح نباتات، دانشکده کشاورزی دانشگاه ایلام، ایلام

2 دانشیار گروه زراعت و اصلاح نباتات، دانشکده کشاورزی دانشگاه ایلام، ایلام

چکیده

باکتری جنس آزوسپیریلوم (Azospirillum) و قارچ‌های میکوریز از جمله میکروارگانیسم‌های محرک رشد گیاه هستند که می‌توانند باعث تحریک رشد و افزایش تحمل گیاهان در شرایط تنش‌های محیطی مانند خشکی و شوری گردند. در آزمایشی طراحی‌شده به‌صورت فاکتوریل در قالب طرح پایه بلوک‌های کامل تصادفی، قابلیت باکتری‌های آزوسپیریلوم سویه‌های سازگار و غیرسازگار به شوری در تلقیح جداگانه و نیز در ترکیب با قارچ Piriformospora indica بر برخی صفات فیزیولوژیک، جذب عناصر و عملکرد دانه گیاه گندم تحت تنش شوری مورد ارزیابی قرار گرفت. فاکتورهای آزمایش عبارت بودند از کاربرد پنج سطح ریزسازواره‌های درون‌زیست شامل قارچ پریفورموسپورا ایندیکا، باکتری آزوسپیریلوم سویه‌های سازگار به مناطق شور و غیرشور، تلقیح توأم قارچ و باکتری و شاهد و نیز چهار سطح شوری آب آبیاری شامل 2/0، 4، 8 و 12 دسی‌زیمنس ‌بر‌ متر. کاربرد قارچ پریفورموسپورا ایندیکا و سویه­های آزوسپیریلوم و تلقیح توأم آن‌ها،تأثیر قابل توجه و معنی‌داری بر عملکرد دانه، جذب عناصر فسفر و نیتروژن، محتوای کلروفیل و پروتئین بیشتری تحت شرایط عدم‌شوری داشت. تلقیح گندم با سویه سازگار به شوری باکتری جنس آزوسپیریلوم، تأثیر بسیار مطلوبی بر میزآن‌های کلروفیل و پرولین گیاه داشت و جذب نیتروژن توسط گیاه را تحت تنش شوری زیاد افزایش داد. نتایج تحقیق نشان‌دهنده این بود که میزان تأثیر کاربرد به تنهایی و یا تلفیقی این ریزسازواره‌های درون‌زیست گیاهی بستگی به سطوح شوری اعمال شده دارد. در عدم‌تنش تأثیر کاربرد توأم باکتری و قارچ بر عملکرد دانه بیشتر بود. درحالی‌که در تنش شوری کم (EC=4) کاربرد توأم و جداگانه باکتری و قارچ تأثیری مشابه بر عملکرد داشت در تنش شدید (EC=12) کاربرد جداگانه آن‌ها  بهتر بود. 

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Co-inoculation of Endophytic Fungus Piriformospora Indica and Azospirillum Strains on Some Physiological Traits, Nutrient Absorption and Grain Yield of Wheat (Triticum aestivum cv. Sardari) Under

نویسندگان [English]

  • somayeh hajiniya 1
  • mohammadjavad zaree 2
چکیده [English]

Bacteria of the genus Azospirillum and mycorrhizal fungi, well known as plant growth promoting microorganism, are considered to can improve plant tolerance to environmental stresses such as drought and salinity conditions. A factorial randomized complete block design replicated in three times was conducted to test the effects of Azospirillum strains and fungus Piriformospora indica under increasing salinity levels on wheat seedlings growth, nutrient absorption as well as some physiological traits. Treatments were consisted of five bioinoculants (P. indica, salt adapted and non-adapted Azospirillum strains, dual inoculation of the both microorganisms and non-inoculated treatment as control) as well as four salinity levels (0.2, 4, 8 and 12 dS m-1). Singly or co-inoculation of wheat with P. indica and salt-adapted and non-salt adapted Azospirillum strains lead to a higher increase in grain yield, N and P concentrations, protein content as well as total photosynthetic pigments, both under salinity and normal conditions. Plant inoculated with salt-adapted Azospirillumspp., under salinity, had the higher nutrient uptake (P and N), protein content as well as total photosynthetic pigments. From obtained result of the present study use of endophytic plant growth promoting microorganism singly or in combination depend on induced salinity levels is different. Under non-salinity dual combination of both microorganisms was more effective in enhancing grain yield compared to other treatments. While under the lower level of salinity (EC=4) microorganisms, both in singly or in combination, had a same effect on grain yield, under severe salinity (EC=12) singly inoculation of each microorganisms had a better performance on grain yield.

کلیدواژه‌ها [English]

  • Saline water irrigation
  • Plant growth promoting rhizobacteria
  • Piriformospora indica
  • Wheat

حیدری شریف‌آباد، ح.1380. گیاه و شوری، مؤسسه تحقیقات جنگل‌ها و مراتع. تهران. 199 صفحه.

کریمی، ن. 1391. جداسازی و شناسایی همزیست­های گیاهی(Azospirillum) مناطق شور و بررسی تداخل گندم-علف هرز به تلقیح با قارچ انوفیت P. indica تحت تنش شوری. پایان­نامه کارشناسی ارشد زراعت – دانشگاه ایلام، 70-67.

Al-Karaki, G. N. 2000. Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza. 10: 51-54.

Ashraf, M. and Harris, P. 2004. Potential biochemical indicators of salt tolerance in plants. Plant Science, 166: 3-16.

Bacilio, M., Rodrı´guez, H., Moreno, M., Herna´ndez, J. P. and Bashan, Y. 2004. Mitigation of salt stress in wheat seedlings by a gfp-tagged Azospirillum lipoferum. Biology and Fertility of Soils, 40: 188-193.

Baltruschat, H., Fodor, J., Harrach, B. D., Niemczyk, E., Barna, B., Gullner, G., Janeczko, A., Kogel, K. H., Schafer, P. and Schwarczinger, I. 2008. Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytologist, 180: 501-510.

Barassi, C. A., Creus, C. M., Casanovas, E. M. and Sueldo, R. J. 2000. Could Azospirillum mitigate abiotic stress effects in plants? Auburn University web site available at: http://www.ag.auburn.edu/argentina/pdfmanuscripts/barassi.pdf

Bashan, Y., Holguin, G., and de-Bashan, L. E. 2004. Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Canadian Journal of Microbiology, 50: 521-577.

Bates, L.S., Waldren, R.O. and Teare, I. D. 1973. Rapid determination of free proline for water-tress studies. Plant Soil, 39: 205-207.

Bianciotto, V. and Bonfante, P.  2002, Arbuscular mycorrhizal fungi: a specialised niche for rhizospheric and endocellular bacteria, Antonie Leewvenhoek,81:365-371.

Bothe, H., Korsgen, H., Lehmacher, T. and Hundeshagen, B. 1992. Differential effects of Azospirillum, auxin and combined nitrogen on the growth of the roots of wheat. Symbiosis, 13:167-179.

Cantrell, I.C. and Linderman, R. G. 2001. Pre-inoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil, 233: 269-281.

Casanovas, E. M., Barassi, C. A., Andrade, F.H. and Sueldo, R.J. 2003. Azospirillum- inoculated maize plant responses to irrigation restraints imposed during flowering. CerealResearchCommunications , 31: 395-402.

Cheraghi, S. 2004. Institutional and scientific profiles of organizations working on saline agriculture in Iran. In Prospects of Saline Agriculture in the Arabian Peninsula: Proceedings of the International Seminar on Prospects of Saline Agriculture in the GCC Countries. In: Taha, F. K.., Ismail, S. and Jaradat, A, (eds), 18-20 March 2001, Dubai, United Arab Emirates, pp. 399-412.

Creus, C. M., Sueldo, R. J. and Barassi, C. A. 1997. Shoot growth and water status in Azospirillum-inoculated wheat seedlings grown under osmotic and salt stresses. Plant Physiology andBiochemistry, 35: 939-944.

FAO. 2000. Global Network on Integrated Soil Management for Sustainable Use of Salt-affected Soils. Country Specific Salinity Issues – Iran. Rome, Italy: FAO. http://www.fao.org/ag/agl/agll/spush/degrad.asp?country=iran.

Francisco, G., Jhon, L., Jifon, S., Micaela, C. and James, P. S. 2002. Gas exchange, chlorophyll and nutrient contents in relation to Na+ and Cl- accumulation in ‘sunburst’ mandarin grafted on different root stocks. Journalplant science, 35: 314-320.

Grant, C., Bittman, S., Montreal, M., Plenehette, C. and Morel, C. 2005. Soil and fertilizer phosphorus: Effects on plant P supply and mycorrhiza development. Canadian Journal of Plant Science, 85: 3-4.

Greenway, H. and Munns, R. 1980. Mechanisms of salt tolerance in nonhalophytes. AnnualReview ofPlant Physiology, 31: 141-190.

Hung, J. and Redmann, R. E. 1995. Solute adjustment to salinity and calcium supply in cultivated and wild barley. Journal of Plant Nutrition, 18: 1371-1995.

Jindal, V., Atmal, A., Seckhon, B. S. and Sing, R. 1993. Effect of vesicular-arbuscular mycorrhizae on metabolism of moong plant under NaCl salinity. Plant PhysiologyandBiochemistry,  31: 475-481.

Ma, W., Charles, T. C. and Glick, B. R. 2004. Expression of an exogenous 1-Aminocyclopropane-1-carboxylate deaminase gen in Synorhizobium meliloti increases its ability to nodulate alfalfa. Annual Review of Plant Biology Home, 35: 299-319.

Malla R. and Varma, A. 2004. Phosphatase(s) from microorganisms. In: Varma, A., Podila, G. K., (eds) Biotechnological applications of microbes. IK International, New Delhi, pp. 125-150.

Mass, E. V. and Hoffman, G. J. 1977. Crop tolerance current assessment. Journal of the Irrigation and Drainage Division. 103: 115-134.

Peng, Y. L., Gao, Z. W., Gao, Y., Liu, G. F., Sheng, L. X. and Wang, D. L. 2008. Ecophysiological characteristics of alfalfa seedlings in response to various mixed salt-alkaline stresses. Journal of Plant Biology. 50 (1): 29-39.

Rao, B. V. and Kates Warla, V. 1985. Salt tolerance of Azospirillum brasilense. Acta Microbiologica at Immunologica Hungarica, 32: 221-224.

Saatovich, S. Z. 2006. Azospirilli of Uzbekistan soils and their influence on growth and development of wheat plants. Plant  Soil, 283: 137-145.

Shanon, M. C. 1997. Adaptation of plants to salinity. Advanced Agronomy, 60: 75-120.

Sherameti, I., Shahollari, B., Venus, Y., Altschmied, L., Varma, A. and Oelmüller, R. 2005. The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor which binds to a conserved motif in their promoters. Biology Chememistry, 280: 26241-26247

Strain, H. H. and Svec, W. A. 1966. Extraction, separation, estimation and isolation of chlorophylls. In: Vernon, L.P., Seely, G. R., (Eds.). The Chlorophylls. Academic Press, New York. pp. 21-66.

Swedrzynska, D. and Sawicka, A. 2000. Effect of inoculation with Azospirillum brasilense on development and yielding of maize (Zea mays ssp. saccharata L.) under different cultivation conditions. Polish Journal of Environmental Studies, 9: 505-509.

Varma, A., Abbott, L. K., Werner, D. and Hampp, R. 2004. The state of Plant surface microbiology. In: Varma, A., Abbott, L., Werner, D. and Hampp, R. (eds), Plant surface  microbiology. Springer, Berlin Heidelberg New York pp. 1-11.

Varma, A., Bakshi, M., Lou, B., Hartmann, A. and Oelmueller, R., 2012. Piriformospora indica: A Novel Plant Growth-promoting mycorrhizal fungus. Agricultural Research, 1: 117-131.

Varma, A., Singh, A., Sahay, N., Sharma, J., Roy, A., Kumari, M., Rana, D., Thakran, S., Deka ,D., Bharati, K., Franken, P., Hurek, T., Blechert, O., Rexer, K. H., Kost ,G., Hahn, A., Hock, B., Maier, W., Walter, M., Strack, D. and Kranner, I. 2001.  Piriformospora indica, A cultivable mycorrhiza-like endosymbiotic fungus. In: Hock, B. (eds), Mycota IX. Springer, Berlin Heidelberg New York. PP. 123-150.

Verma, A., Savita, S., Sahay, N., Butehorn, B. and Franken, P. H. 1998. Piriformospora indica, A cultivable plant-growth-promoting root endophyte. Appliedand EnvironmentalMicrobiology, 65: 2741-2744.

Waller, W., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., Heier, T., Huckelhoven, R., Neumann, C., Wettstein, D., Franken, P. and Kogel, K. H. 2005. The endophytic fungus Piriformospora indica reprograms barley to salt stress tolerance, disease resistance and higher yield. Proceedings of the National Academy of Sciences of the United States of America, 102: 13386-13391.

Zaki, M., Hassanein, M. S., Karima, M and Gamal, E. L. 2007. Growth and yield of wheat cultivars irrigated with saline water in newly cultivated land as affected by biofertilization. Journal of Applied Sciences Research, 3(10): 1121-1126.

Zarea, M. J., Chordia, P. and Varma, A. 2013a. Piriformospora indica versus salt stress. In: Varma, A., Gerhard, K., Ralf, O. (eds.), Piriformospora indica, Soil Biology 33, Springer-Verlag Berlin Heidelberg.

Zarea, M. J., Hajinia, S., Karimi, N., Mohammadi Goltapeh, E., Rejali, F. and Varma, A., 2012. Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biology and Biochemistry, 45: 139-146.

Zarea, M. J., Miransari, M. and Karimi N. 2014. Plant physiological mechanisms of salt tolerance induced by mycorrhizal Fungi and Piriformospora indica, In: M. Miransari (ed.), Use of Microbes for the Alleviation of Soil Stresses, Springer Science+Business Media New York.

Zarea, M. J., Mohammadi Goltapeh, E., Karimi, N. and Varma, A. 2013b. Sustainable Agriculture in Saline-Arid and Semiarid by Use Potential of AM Fungi on Mitigates NaCl Effects, In: E. M. Goltapeh, Mohammadi Goltapeh, E., Danesh, Y. R., Varma, A, (eds.), Fungi as Bioremediators, Soil Biology 32, Springer-Verlag Berlin Heidelberg.