تأثیر تنش شوری بر برخی ویژگی‌های فیزیولوژیکی و رشد دو رقم ذرت شیرین

نوع مقاله: علمی - پژوهشی

نویسندگان

1 دانشجوی کارشناسی‌ارشد، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

2 دانشیار، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

3 استادیار، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

چکیده

به­منظور بررسی واکنش دو رقم ذرت شیرین به تنش شوری، آزمایشی در گلخانه تحقیقاتی دانشکده کشاورزی دانشگاه شیراز (باجگاه)، به­صورت فاکتوریل در قالب طرح کاملاً تصادفی با 4 تکرار اجرا گردید. تیمارهای آزمایش شامل دو رقم ذرت شیرین (KSC403 و Passion) و 4 سطح شوری صفر، 25، 50 و 100 میلی­مولار از دو نوع نمک NaCl و CaCl2 به نسبت 1:1 بود. نتایج نشان داد که با افزایش شوری، ارتفاع ساقه و وزن خشک هر دو رقم کاهش یافت و این کاهش در رقم Passion شدیدتر بود. رقم KSC403 در مقایسه با رقم Passion، فعالیت آنزیم­هایآنتی­اکسیدانی بیشتر و غلظت سدیم اندام هوایی و ریشه کمتری داشت. با افزایش شوری، فعالیت آنزیم کاتالاز و سوپراکسید دیسموتاز در هر دو رقم به­ترتیب کاهش و افزایش یافت و فعالیت آنزیم پراکسیداز تا سطح شوری 50 میلی­مولار افزایش و پس از آن کاهش یافت. با افزایش تنش شوری، کلروفیل کل برگ­ها کاهش یافت که دو رقم از این نظر تفاوت معنی­داری نداشتند. نسبت سدیم به پتاسیم ریشه و اندام هوایی در شرایط تنش شوری افزایش یافت و این نسبت در رقم Passion بیشتر بود. برتری رقم KSC403 در اکثر صفاتاندازه­گیری شده می­تواند بیانگر توانایی بیشتر این رقم در تحمل تنش شوری باشد. غلظت کمتر یون سدیم و مقدار بیشتر یون پتاسیم در اندام هوایی و ریشه گیاه می­تواند به­عنوان معیاری در گزینش ارقام مقاوم به تنش شوری در نظر گرفته شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Salinity on Some Growth and Physiological Characteristics of Two Cultivars of Sweet Corn (Zea mays var. saccharata)

نویسندگان [English]

  • Afsaneh Nematpour 1
  • Seyed Abdol-Reza Kazemeini 2
  • Mohsen Edalat 3
1 M.Sc. Student, Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Shiraz, Shiraz. Iran
2 Associate Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Shiraz, Shiraz. Iran
3 Assistant Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Shiraz, Shiraz. Iran
چکیده [English]

In order to evaluate the response of two cultivars of sweet corn to salinity stress a greenhouse experiment was conducted at the Faculty of Agriculture, Shiraz University, in a factorial experiment based on completely randomized design in four replications. Treatments included two cultivars of sweet corn (KSC403 and Passion) and four salinity concentration 0, 25, 50 and 100 mM from NaCl and CaCl2 at a 1:1 ratio. The results showed that with increasing in salinity, plant height decreased and dry weight of both cultivars also decreased however this decline was more pronounced in Passion. KSC403 had more antioxidant enzymes activities and less shoot and root Na+ concentration compared with Passion. With increasing salinity, CAT and SOD activities of both cultivars decreased and increased, respectively, and POX activity increased to 50 mM of salinity and then decreased. With increasing in salinity level, total leaf chlorophyll decreased although these cultivars were not significantly different in this respect. Na+/K+ ratio of root and shoot increased in salinity and this ratio was more in Passion. The superiority of KSC403 in most of the traits could indicate its higher ability to tolerate salinity stress. Lower concentration of Na+ and more concentration of K+ in shoot and root of plant can be considered as a criterion in the selection of resistant cultivars to salinity stress.

کلیدواژه‌ها [English]

  • Antioxidant enzymes
  • Dry weight
  • Potassium
  • Sodium

اکبری­قوژدی، ا.، ایزدی­دربندی، ع.، برزوئی، ا. و مجدآبادی، ع. 1389. بررسی تغییرات مورفولوژیک ژنوتیپ­های گندم در شرایط تنش شوری. علوم و فنون کشت­های گلخانه­ای، سال اول (4): 82- 71.

انفراد، ا.، پوستینی، ک.، مجنون حسینی، ن.، طالعی، ع. ر. و عطاری، ا. 1382. واکنش­های فیزیولوژیکی ارقام کلزا (Brassica napus)  در مرحله رشد رویشی نسبت به تنش شوری. مجله علوم و فنون کشاورزی و منابع طبیعی، سال 7 (4): 112-103.

چمانی، ف.، حبیبی، د.، خدابنده، ن.، داوودی­فر، م. و اصغرزاده، ا. 1391. بررسی اثر تنش شوری بر عملکرد دانه و فعالیت آنزیم­های آنتی­اکسیدان گندم تلقیح شده با باکتری­های محرک رشد (ازتوباکتر­کروکوم، آزوسپیریلیوم­لیپولزوم، سودوموناس­پوتیدا) و اسید هیومیک. مجله زراعت و اصلاح نباتات، 8 (3): 55-39.

حسن­نژادیان­فرد، س. 1388. واکنش چند رقم ذرت شیرین به سطوح متفاوت کود سرک نیتروژن و حذف پاجوش. پایان­نامه کارشناسی­ارشد زراعت. دانشکده کشاورزی دانشگاه شیراز. 109 صفحه.

رحیمی، ا.، شمس­الدین­سعید، م. و اعتمادی، ف. 1389. اثر تنش شوری بر جوانه­زنی، رشد رویشی و مقادیر یونی سیاه­دانه (Nigella sativa L.). فصلنامه علمی- پژوهشی خشک­بوم، 1 (2): 30-20.

فریور، ا. 1378. تولید و فرآوری ذرت شیرین. زیتون، شماره 140.

مختارپور، ح.، بهمرام، ر.، و زیادلو گلستان، ص.1380. دستورالعمل­های فنی کاشت محصولات زراعی و باغی در استان گلستان. انتشارات مرکز تحقیقات کشاورزی گلستان، 159 صفحه.

میر­محمدی ­میبدی، س. ع. م. و قره­یاضی، ب. 1381. جنبه­های فیزیولوژیک و به­نژادی تنش شوری گیاهان .انتشارات دانشگاه صنعتی اصفهان. 276 صفحه.

هی، آر. ام. و واکر، ا. ج. 2011. مقدمه­ای بر فیزیولوژی گیاهان زراعی (چاپ سوم). ترجمه امام، ی. و نیک­نژاد، م.، انتشارات دانشگاه شیراز. 571 صفحه.

Agarwal, S. and Pandey, V. 2004. Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biology of Plant, 48: 555-560.

Akram, M., Malik, A., Asfraf, Y., Saleem, F. and Hussain, M. 2007. Competitive seedling growth and K+/Na+ ration different maize (Zea mays L.) hibrids under salinity stress. Pakistan Journal of Botany, 39 (7): 2553-2563.

Appel, K. and Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annual Review of Plant Biology, 55: 373-399.

Ashraf, M. and Ali, Q. 2008. Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environmental and Experimental Botany, 63: 266-273.

Azooz, M., Ismail, A. and Elhamd, F. A. 2009. Growth, lipid peroxidation and antioxidant enzyme activities as a selection criterion for the salt tolerance of three maize cultivars grown under salinity stress. International Journal of Agriculture and Biology, 11: 21-26.

Beauchamp, C. and. Fridovich, I. 1971. Superoxide dismutase: Improved assays and an assay predictable to acrylamide gels. Annals of Clinical Biochemistry, 44: 276-287.

Becana, M., Moran, J. F. and Iturbe-Ormaetxe, I. 1998. Iron dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection. Plant and Soil, 201: 137-147.

Bowler, C., Van Montagu, M. and Inze, D. 1992. Superoxide dismutase and stress tolerance. Annual Review of Plant Physiol and Plant Molecular Biology, 43: 83-116.

Brugnoli, N. and. Lauteri, M. 1991. Effect of salinity on stomatal conductance photosynthesis capacity and carbon isotope discrimination of salt tolerant, (Gossypium hirsutum L.) and salt sensitive (Phaseolus vulgaris L.) C3 non- halophytes. Plant Physiology, 95: 628-635.

Budakli Carpici E., Celik, N. and Bayram, G. 2010. The effects of salt stress on the growth, biochemical parameter and mineral element content of some maize (Zea mays L.) cultivars. African Journal of Biotechnology, 9 (41): 6937-6942.

Chance, B. and Maehly, A .C. 1995. Assay of catalase and peroxidase. Pp. 764-765 In: Culowic, S. P. and Kaplan, N. O. (eds). Methods in enzymology Vol. 2. Academic Press. Inc. New York.

Cha-Um, S. and Kirdmanee, C. 2009. Effect of salt stress on proline accumulation, photosynthetic ability and growth characters in two maize cultivars. Pakistan Journal of Botany, 41 (1): 87- 98.

Costa, P. H. A., Neto, A. D. A., Bezerra, M. A., Prisco, J. T. and Gomes-Filho, E. 2005. Antioxidant-enzymatic system of two sorghum genotypes differing in salt tolerance. Brazilian Journal of. Plant Physiology, 17: 353-361.

Dhindsa, R. S., Plumb-Dhindsa, P. and Thorpe, T. A. 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32: 93-101.

Drazkiewicz, M. 1994. Chlorophyllase: Occurance functions, mechanisms of action, effects of external and internal factors. Photosynthesis, 30: 321-331.

Eker, S. Comertpay, G., Konuskan, O., Ulger, A., Ozturk, L. and Cakmak, I. 2006.Effect of salinity stress on dry matter production and ion accumulation in hybrid maize varieties. Turkish Journal of Agriculture and Forestry, 30: 365-373.

Foyer, C. H. and halliwell, B. 1979. The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta, 133: 21-25.

Hamilton, E. W. and Heckathorn, S. A. 2001. Mitochondrial adaptations to NaCl: complex I is protected by antioxidants and small heat shock proteins, where as complex II is protected by proline and betaine. Plant Physiology, 126: 1266-1274.

He, T. and Cramer, G. R. 1993. Salt tolerance of rapid cycling Brassica species in relation to K+/Na+ ratio and selectivity at the whole plant and callus levels. Journal of Plant Nutrition, 16: 1263-1277.

Kaya, C., Ashraf, M., Dikilitas, M. and Tuna, A. L. 2013a. Alleviation of salt stress-induced adverse effects on maize plants by exogenous application of indoleacetic acid (IAA) and inorganic nutrients– A field trial. Australian Journal of Crop Science, 7 (2): 249- 254.

Kaya, C., Sonmez, O., Aydemir, S. and Dikilitas, M. 2013 b. Mitigation effects of glycinebetaine on oxidative stress and some key growth parameters of maize exposed to salt stress. Turkish Journal of Agriculture and Forestry, 37: 188-194.

Lichtenthaler, H. and Wellburn, A. R. 1983. Determination of total carotenoids and chlorophyll a and chlorophyll b leaf extracts in different solvents. Journal of Biochemistry, 603: 591-592.

Liu, J., Tong, L. P., Shen, T. W., Li, J., Wu, L. and Yu, Z. L. 2007. Impact of ion implantation on licorice (Glycyrrhize uralensis Fisch) growth and antioxidant activity under drought stress. Plasma Science and Technology, 9 (3): 301-306.

Mane, A. V., Deshpande, T. V., Wagh, V. B., Karadge, B. A. and Samant, J. S. 2011. A critical review on physiological changes associated with reference to salinity. International Journal of Environmental Science, 1 (6): 1192-1216.

Mohammdkhani, N. and Heidari, R. 2007.Effects of drought stress on protective enzyme activities and lipid peroxidation in two maize cultivars. Pakistan Journal of Biological Sciences, 10 (21): 3835-3840.

Munns, R. 2002. Comparative physiology of salt and water stress. Plant, Cell and Environment, 25: 659-671.

Nemoto, Y. and Sasakuma, T. 2002. Differential stress responses of early salt stress responding genes in common wheat. Phytochemistry, 61: 129-133.

Noble, C. L. and Rogers, M. E. 1992. Arguments for the use of physiological criteria for improving the salt tolerance in crops. Plant Physiology, 146: 99-107.

Pan. Y., Wu, L. J. and Yu, Z. L. 2006. Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis fisch). Plant Growth Regulation, 49: 157-165.

Parvaiz, A. and Satyawati, S. 2008. Salt stress and phyto-biochemical responses of plants. Plant Soil Environment, 54: 89-99.

Parvaiz, M. 2013. Response of maize to salt stress a critical review. International Journal of Healthcare Science, 1: 13- 25.

Rengel, Z. 1992. The role of calcium in salt toxicity. Plant, Cell and Environment,15: 625-632.

Rezvani Moghaddam, P. and Koocheki, A. 2001. Research history on salt affected lands of Iran: Present and future prospects-Halophytic ecosystem. International Symposium on Prospects of Saline Agriculture in the GCC Countries, Dubai, UAE.

Rohanipoor, A., Norouzi, M., Moezzi, A. and Hassibi, P. 2013. Effect of silicon on some physiological properties of Maize (Zea mays L.) under salt stress. Journal of Biology and Environment Science, 7 (20): 71- 79.

Sairam, R. K. and Srivastava, G. C. 2002. Changes in antioxidant activity in sub- cellular fraction of tolerant and suceptible wheat genotypes to long term salt stress. Journal of Plant Science, 162: 897-904.

Schachtman, D. P., Munns, R. and Whitecross, M. I. 1991. Variation in sodium exclusion and salt tolerance in Tiriticum tauschii. Crop Science,31: 992-997.

Subbarao, G. V. and Johansen, C. 2001. Strategies and Scope for Improving Salinity Tolerance in Crop Plants. pp. 1069 - 1087 In: Pessarakli, M., Hand book of Plant and Crop Stress. Marcel Dekker Inc. New York. USA. 990 pp.

Tuna, A. L., Kaya, C., Altunlu, H. and Ashraf, M. 2013. Mitigation effects of non-enzymatic antioxidants in maize (Zea mays L.) plants under salinity stress. Australian Journal of Crop Science, 7 (8):1181-1188.

Zörb, C., Schmitt, S., Neeb, A., Karl, S., Linder, M. and Schubert, S. 2004. The biochemical reaction of maize (Zea mays L.) to salt stress is characterized by a mitigation of symptoms and not by a specific adaptation. Plant Science, 167: 91-100.