تأثیر کم‌آبیاری بر عملکرد، خصوصیات بیوشیمیایی و فیزیولوژیکی هیبریدهای ذرت (.Zea mays L)

نوع مقاله : مقاله علمی-پژوهشی

نویسندگان

1 دانش‌آموخته دکتری زراعت، دانشکده علوم پایه، آکادمی ملی علوم ارمنستان، ایروان، ارمنستان

2 استاد گروه علوم پایه، دانشکده علوم پایه، آکادمی ملی علوم ارمنستان، ایروان، ارمنستان

3 دانشیار گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه رازی کرمانشاه، کرمانشاه

چکیده

به‌منظور بررسی عملکرد، اجزاء عملکرد و راندمان مصرف آب و هم‌چنین پاسخ بیوشیمیایی گیاه ذرت به کم آبیاری، آزمایشی در منطقه کرج در سال‌های 1388 و 1389 انجام شد. عوامل مورد بررسی شامل پنج رژیم مختلف آبیاری {آبیاری کامل (1I)، 5/12 درصد (2I)، 25 درصد (3I)، 5/37 درصد (4I) و 50 درصد (5I) کم آبیاری{ و سه هیبرید ذرت شامل سینگل کراس 704، 500 و 301 بود. در هر سه هیبرید، کم‌ آبیاری سبب کاهش محتوای نشاسته برگ و ریشه و افزایش قندهای محلول شد. سطح پرولین نیز در برگ و ریشه‌ی هر سه هیبرید درنتیجه‌ی کم آبیاری افزایش یافت. افزایش محتوای پرولین در برگ نسبت به ریشه بالاتر بود، اما افزایش مقدار قند محلول و کاهش محتوای نشاسته در ریشه بیشتر از برگ شد. هم‌چنین بیش‌ترین پرولین و قندهای محلول برگ و ریشه در تیمار 50% کم‌آبیاری و بیشترین نشاسته برگ و ریشه در آبیاری کامل مشاهده گردید. نتایج هم‌چنین نشان داد که بیش‌ترین تعداد دانه در بلال، وزن هزار دانه و عملکرد دانه در آبیاری کامل مشاهده شد. البته تفاوت معنی‌داری از لحاظ مقدار اجزاء عملکرد بین آبیاری کامل و 5/12 درصد کم آبیاری مشاهده نشد. در آزمایش انجام شده، حداکثر راندمان مصرف آب در سینگل کراس704 در تیمار 5/12 درصد کم آبیاری و در سینگل کراس 500 و 301 در تیمار 25 درصد کم آبیاری مشاهده گردید. در مجموع چنین نتیجه‌گیری شد که هیبرید سینگل کراس 704 در شرایط 5/12 درصد کم‌آبیاری جهت دستیابی به حداکثر عملکرد و حداکثر راندمان مصرف آب قابل توصیه است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Deficit Irrigation on Yield and Biochemical and Physiological Characteristics of Corn Hybrids (Zea mays L.)

نویسندگان [English]

  • Houman Homayouni 1
  • Victoria Khazarian 2
  • Mohsen Saeidi 3
1 PhD Graduated, Department of Basic Sciences, Institute of Botanic, National Academy of Sciences of Armenia, Yerevan
2 Professor, Department of Basic Sciences, Institute of Botanic, National Academy of Sciences of Armenia, Yerevan
3 Associate Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Razi University, Kermanshah
چکیده [English]

To evaluate corn yield, yield components, and water use efficiency as well as biochemical responses to deficit irrigation, a farm experiment was executed in Karaj in 2009 and 2010. The factors consisted of five different irrigation regimes [including full irrigation (I1), 12.5% (I2), 25% (I3), 37.5% (I4) and 50% (I5) water deficit] and three corn (Zea mays L.) hybrids (Sc704, Sc500 and Sc301). Deficit irrigation decreased starch content and increased soluble sugars in the leaves and roots of all three hybrids. Proline level in roots of all three hybrids was also increased in response to deficit irrigation. The increase in proline content was higher in leaves than in roots, but the increase in soluble sugar content and decrease in starch content were higher in roots than in leaves. Results indicated that the highest leaf and root proline and soluble sugars levels were related to treatment I5 and the highest leaf and root starch content were related to full irrigation. Results also indicated that the highest number of grains per ear, weight of one thousand grains and grain yield were related to full irrigation. There was no significant differences between full irrigation and 12.5% of water deficit. In the conducted test, maximum water use efficiency in Sc704 was observed in treatment I2 and in Sc500 and Sc301 were observed in treatment I3. In sum, it is concluded that the hybrid to Sc704 in 12.5% of water deficit could be recommended in order to achieve maximum yield and water use efficiency.

کلیدواژه‌ها [English]

  • Proline
  • Water use efficiency
  • Soluble sugars
  • Restriction of humidity
  • Starch
خیرابی، ج. 1381. بررسی و مقایسه تطبیقی روش پنمن - مانتیس با روش‌های فائو 24 در ایران. انتشارات کمیته ملی آبیاری و زهکش ایران. 216 صفحه.
قدیری، ه. و مجیدیان، م. 1382. اثر سطوح مختلف نیتروژن و تنش رطوبتی در مراحل شیری و خمیری روی عملکرد، اجزاء عملکرد و راندمان مصرف آب در ذرت (Zea mays L.). مجله علوم و تکنولوژی کشاورزی و منابع طبیعی، 7 (2): 114-103.
زواره، م. و امام، ی. 1378. شناخت مراحل زندگی کلزا (Brassica napus). مجله علوم گیاهان زراعی ایران، 2: 14-1.
عشقی‌زاده، ح. ر.، و احسان‌زاده، پ. 1388. تاثیر رژیم های مختلف آبیاری بر چند ژنوتیپ ذرت: II. عملکرد، اجزای عملکرد دانه و راندمان مصرف آب آبیاری، مجله علوم گیاهان زراعی ایران، 40 (2): 153-145.
Ahmadi, A. and Baker, D. A. 2001. The effect of water stress on grain filling processes in wheat. Journal of Agricultural Sciences, 136: 257-269.
Ahsan, A., Hussain, M. M., Farooq, A., Khaliq, I., Farooq, J., Ali, Q. and Kashif, M. 2011. Physio-genetic behavior of maize seedlings at water deficit conditions. Cercetari Agronomic in Moldova, 1462: 41-49.
Al-Hakimi, A., Monneveux, P. and Galiba, G. 1995. Soluble sugars, proline and relative water content (RWC) as traits for improving drought tolerance and divergent selection for RWC from T. polonicum into T. durum. Journal Genetice Breeding, 49: 237-244.
Andrade, F. H., Echart, L., Rizzalli, R., Della Maggiora, A. and Casanovas, M. 2002. Kernel number predication in maize nitrogen or water stress. Crop Science, 42: 1173-1179.
Ashraf, M. and Foolad, M. R. 2007. Improving plant abiotic-stress resistance by exogenous application of osmoprotectants glycinebetaine and proline. Environmental and Experimental Botany, 59: 206-216.
Baker, R. J. 1993. Breeding methods and selection indices for improved tolerance to biotic and abiotic stresses in cool season food legumes. Euphitica, 73: 67-72.
Bates, L. S., Waldron, R. P. and Teare, I. D. 1973. Rapid determination of free proline for water stress studies. Plant Soil, 39: 205-208.
Bellinger, Y. and Larher, F. 1987. Proline accumulation in higher plants: a redox buffer? Plant Physiology, 6: 23-27.
Benjamin, J. G., Nielsen, D. C., Vigil, M. F., Mikha, M. M. and Calderon, F. J. 2014. Water deficit stress effects on corn (Zea mays L.) root: shoot ratio. Open Journal of Soil Science, 4: 151-160.
Brocklehurest, P. A., Moss, J. P. and Williams, W. 1978. Effect of irradiance and water supply on grain development in wheat. Annual Applied. Biology, 90: 265-276.
Brooks, A., Jenner, C. F. and Aspinall, D. 1982. Effect of water deficit on endosperm starch granules on grain physiology of wheat and barley. Australian Journal of Plant Physiology, 4: 423-436.
Buitink, J., Laessens, M. M. A. E., Hernmings, M. A. and Hoekstra, F. A. 1998. Influence of water content and temperature on molecular mobility and intracellular glasses in seeds and pollen. Plant Physiology, 118:531-541.
Csonka, L. N. 1989. Physiological and genetic responses of bacteria to osmotic stress. Microbiology Review, 53: 121-147.
Delauney, A. J. and Verma, D. P. S. 1993. Proline biosynthesis and osmoregulation in plants. Plant Journal, 4: 215-223.
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 38: 350-356.
Eck, H. V. 1986. Effects of water deficit on yield components, and water use efficiency of irrigation corn. Agronomy Journal, 78: 1035-1040.
Egli, D. B. 1999. Seed biology and the yield of grain crops. United Kingdom, CAB International, 682 pp.
Finkelstein, R. R. and Gibson, S. I. 2001. ABA and sugar interactions regulating development: cross-talk or voices in a crowd. Current Opinion Plant Biology, 5: 26-32.
Fischbach, D. E. and Mulliner, M. R. 1972. Every other furrow irrigation of corn. ASAE, 17 (3): 426-428.
Fischer, C. and Höll, W. 1991. Food reserves in scots pine (Pinus sylvestris L.). I. seasonal changes in the carbohydrate and fat reserves of pine needles. Trees, 5:187-195.
Giardi, M. T., Cona, A., Geiken, D., Kucera, T., Masojidek, J. and Matto, A. K. 1996. Long-term drought stress induce structural and functional reorganization of photosystem II. Planta, 199: 118-125.
Gibson, S. I. 2005. Control of plant development and gene expression by sugar signaling. Current Opinion Plant Biology, 8: 93-102.
Giunta, F. and Motzo, R. 1993. Effect of drought on yield and yield components of durum wheat and triticale in Mediterranean environment. Field Crop Research, 33: 339-409.
Hare, P. D., Cress, V. A. and Staden, J. V. 1999. Proline synthesis and degradation: a model system for elucidating related signal transduction. Journal of Experimental Botany, 50: 413-434.
Hare, P. D. and Cress, W. A. 1997. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulator, 21: 79-102.
Hirich, A., Ragab, R., Redouane, C. and Abellatif, R. 2014. Wastewater on sweet corn: experimental and modeling study using SALTMED model. Irrigation Science, 32 (3): 205-2019.
Hoekstra, F. A., Golovina, E. A. and Buitink, J. 2001. Mechanisms of plant desiccation tolerance. Trends Plant Science, 6: 431-438.
Kameli, A. and Losel, D. M. 1993. Carbohydrates and water status in wheat plants under water stress. New Phytology, 125: 609-614.
Kiyosue, T., Yishivba, Y., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1996. Nuclear gen, encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is up regulated by proline but down regulated in Arabidopsis. Plant Cell, 8: 1323-1335.
Koch, K. 1996. Carbohydrate-modulated gene expression in plants. Plant Physiology, 47: 509-540.
Kram, F., Breidy, J., Stephan, C. and Rouphael, J. 2003. Evapotranspiration, yield and water use efficiency of drip irrigated corn in the in Bekaa Vally of Lebanon. Agriculture Water Management, 63: 125-137.
Larher, F., Leport, L., Petrivalsky, M. and Chappart, M. 1993. Effectors for the osmo induced proline response in higher plants. Plant Physiology and Biochemistry, 31: 911-922.
Leopold, A. C., Sun, W. Q. and Bernal-Lugo, L. 1994. The glassy state in seeds: analysis and function. Seed Science Reserche, 4: 267-274.
Morgan, J. M. 1984. Changes in diffusive conductance and water potential of wheat plants before and after anthesis. Australian Journal of Plant Physiology, 4: 314-322.
Masoudi, F., Abdollahi, B., Zardoshti, M. R., Rasouli, M. H. and Tavakoli, A. 2011. Response of proline, soluble sugars, photosynthetic pigments and antioxidant enzymes in potato (Solanum tuberosum L.) to different irrigation regimes in greenhouse condition. Australian Journal of Crop Science, 51: 55-60.
Nakashima, K., Satoh, R., Kiyosue, T., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1998. A gene encoding proline dehydrogenase is not only induced by proline and hypo osmolality, but is also developmentally regulated in the productive organs of Arabidopsis. Plant Physiology, 118: 1323-1335.
Nicolasr, M. E., Gleadow, R. M. and Dalling, M. J. 1985. Effect of post- anthesis drought on cell division and starch accumulation in developing wheat grains. Annuals of Botany, 66: 665-672.
Novari, Y. K., Suratmana, G., Nurlaeny, N. and Simanungkalit, R. D. 2009. Proline and abscisic acid content in drought corn plant inoculated with azospirillum sp. and arbuscular mycorrhizae fungi. Hayati Journal of Biosciences, 16: 15-20.
Parthasarathi, T., Vanitha, K. and Velu, G. 2013. Physiological impact of irrigation water deficit and plant density on maize yield and yield components. Plant Archives, 13 (1): 133-138.
Patakas, A., and Noitsakis, B. 2001. Leaf age effects on solute accumulation in water-stressed grapevines. Plant Physiology, 158: 63-69.
Peng, Z., Lu, Q. and Verma, D. P. S. 1996. Reciprocal regulation of D1-pyrroline-5- carboxylate synthetase and proline dehydrogenase genes control levels during and after osmotic stress in plants. Molecular and General Genettics, 253: 334-341.
Prado, F. E., Boero, C., Gallarodo, M. and Gonzalez, J. A. 2000. Effect of NaCl on germination, growth and soluble sugar content in Chenopodium quinoa wild seeds. Botanical Bulletin of Academia Sinica, 41: 27-34.
Robiul Alam, M., Nakasathien, S., Sarobol, E. and Vichukit, V. 2014. Responses of physiological traits of maize to water deficit induced at different phonological stages. Kasetsart Journal- Natural Science, 48 (2): 183-196.
Royo. C., Abaza. M., Blanco, R., Garcia, D. and Moral, L. F. 2000. Triticale grain growth and morphometry as affected by drought stress, late sowing and simulated drought stress. Australian Journal Plant of Physiology, 27: 1051-1059.
Salemi, H., Mohd, A. M. S., Teang, S. L., Mohd, K. Y. and Desa, A. 2011. Effects of deficit irrigation on water productivity and maize yields in arid regions of Iran. Pertanika Journal of Tropical Agricultural Science, 34 (2): 207-216.
Samaras, Y., Bressan, R. A., Csonka, L. N., Garcia-Rios, M., Paino D’Urzo, M. and Rhodes, D. 1995. Proline accumulation during water deficit. In: Smirnoff, N. (Ed.), Environment and plant metabolism. Flexibility and acclimation. Oxford: Bios Scientific Publishers, pp. 112-134.
Saruhan, N., Terzi, R. and Kadioglu, A. 2006. The effects of exogenous polyamines on some biochemical changes during drought stress in tenanthesetosa. Acta Biologica Hungarica, 57: 221-229.
Seghatoleslami, M. J., Kafi, M. and Majidi, E. 2008. Effect of deficit irrigation on yield, water use efficiency and some morphological and phonological traits of three millet species. Pakistan Journal of Botany, 40 (41): 555-1560.
Serraj, R. and Sinclair, T. R. 2002. Osmolyte accumulation: can it really help increase crop yield under drought conditions?. Plants, Cell and Environment, 25: 333-341.
Sheen, J., Zhou, L. and Jang, J. C. 1999. Sugars as signaling molecules. Current Opinion Plant Biology, 2: 410-418.
Smeekens, S. 2000. Sugar-induced signal transduction in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 51: 49-81.
Smirnoff, N. and Stewart, G. R. 1985. Stress metabolites and their role in coastal plants. Vegetation, 62: 273-278.
Smirnoff, N. and Cumbes, Q. J. 1989. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, 28: 1057-1060.
Stewart, G. R. and Boggess, S. F. 1977. Inhibition of proline oxidation by water stress. Plant Physiology, 59: 930-932.
Taiz, L. and Zeiger, E. 2006. Plant Physiology. (4th Ed). Sunderland, Massachusetts: Sinauer Associates, Inc., Publishers.
Verslues, P. E. and Sharp, R. E. 1999. Proline accumulation in maize primary roots at low water potentials. II metabolic source of increased proline deposition in the elongation zone. Plant Physiology, 119: 1349-1360.
Voetberg, G. S. and Sharp, R. E. 1991. Growth of maize primary root at low water potential. Roles of increased proline deposition in osmotic adjustment. Plant Physiology, 96: 1125-1230.
Wang, Z., Quebedeaux, B. and Stutte, G. W. 1996. Partitioning of (14C) glucose in to sorbitol and other carbohydrates in apple under water stress. Australian Journal Biology Sciences, 23: 245-251.
Wardlaw, I. F. 1971. The early stage of grain development in wheat. Response to water stress in a single variety. Australian Journal Biology Sciences, 24: 1047-1055.
Watanabe, S., Kojima, K., Ide, Y. and Satohiko, S. 2000. Effects of saline and osmotic stress on proline and sugar accumulation in Populuse uphratica in vitro.Plant Cell, Tissue Organs, 63: 199-206.
Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D. and Somero, G. N. 1982. Living with water stress: evolution of osmolyte system.Crop Science, 217:1214-122.
Yang, W. J., Rich, P. J., Axtell, J. D., Wood, K. V., Bonham, C. C., Ejeta, G., Mickelbart, M. V. and Rhodes, D. 2003. Genotypic variation for glycine betaine in sorghum. Crop Science, 43: 162-169.