اثر سطوح مختلف شوری روی برخی از ویژگی‌های فیزیولوژیکی و رشد سلول‌های سه رقم سیب‌زمینی (.Solanum tuberosum L) در شرایط درون‌شیشه‌ای

نوع مقاله: علمی - پژوهشی

نویسندگان

1 استادیار، گروه تولیدات گیاهی (گیاهان دارویی و معطر)، دانشکده کشاورزی سنقر، دانشگاه رازی، کرمانشاه

2 استاد، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه بوعلی‌سینا، همدان

چکیده

روش‌های کشت بافت به‌طور وسیعی به‌منظور اصلاح محصولات، به‌ویژه برای انتخاب گیاهان متحمل به شوری استفاده می‌شوند. شوری مهم‌ترین تنش غیرزیستی است که بر عملکرد گیاهان در سراسر جهان تأثیر می‌گذارد. در این تحقیق ویژگی‌های فیزیولوژیکی و رشد سلول‌های سه رقم سیب‌زمینی (آگریا، مارفونا و سانته) در 6 سطح شوری مورد بررسی قرار گرفت. در ابتدا پینه‌ها از میان‌گره‌های ساقه روی محیط‌کشت نیمه‌جامد موراشیگ و اسکوگ (MS) حاوی دو گرم در لیتر 2-4,D و 4/0 گرم در لیتر کینتین تولید شدند. سپس پینه‌ها به محیط‌کشت‌های مایع دارای همان ترکیبات هورمونی انتقال یافتند و پس از یک واکشت، سیستم کشت سلول‌های معلق مستقر گردید. سلول‌های حاصل نهایتاً در محیط‌کشت‌های مایع حاوی غلظت‌های صفر (شاهد)، 50، 100، 150، 200 و 250 میلی‌مولار کلریدسدیم قرار داده شدند. این پژوهش به‌صورت آزمایش فاکتوریل در قالب طرح پایه­ی کاملا تصادفی با 3 تکرار اجرا شد. در غلظت‌های مختلف کلریدسدیم در محیط‌کشت مایع، میزان وزن تر و خشک، پرولین، کربوهیدرات‌های محلول کل، پروتئین محلول کل، غلظت سدیم و پتاسیم سلول‌ها اندازه‌گیری گردید. نتایج نشان داد که با افزایش غلظت نمک، میزان پرولین، کربوهیدرات‌های محلول کل، پروتئین‌های محلول، وزن خشک و غلظت سدیم سلول‌ها افزایش و میزان وزن تر و غلظت پتاسیم آن‌ها کاهش یافت. واکنش سه رقم سیب‌زمینی به سطوح مختلف شوری متفاوت بود. رقم سانته بیش‌ترین میزان تجمع پرولین، قندهای محلول کل، پروتئین محلول کل و پتاسیم را داشت. این نتیجه می‌تواند بیانگر تحمل بیشتر این رقم نسبت به تنش شوری اعمال شده باشد. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Different Levels of Salinity on some Physiological and Cells-growth Characteristics in Three Potato (Solanum tubrosum L.) Cultivars In Vitro

نویسندگان [English]

  • Masoomeh Amerian 1
  • Mahmood Esna-Ashari 2
1 Assistant Professor, Department of Plant Production (Medicinal and Aromatic Plant), Faculty of Sonqor Agriculture, Razi University, Kermanshaeh
2 Professor, Department of Horticultal Sciences, Faculty of Agriculture, Bu-Ali Sina University, Hamedan
چکیده [English]

Tissue culture methods are widely used for crop breeding specialty for the selection of salt-tolerant plants. Salinity is one of the major abiotic stresses affecting agricultural production worldwide. In this study, the effect of different levels of salinity on some physiological and cells-growth characteristics in the cells of three potato cultivars (Agria, Marfona and Sante) in suspersion culture was studied. Calli were produced from the stem internodes of plants cultured on the semi-solid MS media containing 2 mg L-1 2,4-D and 0.4 mg L-1 Kinetin. Growing cells were then sub-cultured on the same culture media followed by transferring them into the liquid media containing 0, 50, 100, 150, 200 and 250 mM NaCl. Study was performed in a factorial experiment based on a completely randomized design with three replications. The amount of proline, total soluble carbohydrate, total soluble protein and the concentration of Na+ and K+ as well as the fresh and dry weight of the cells were measured. The results showed that by increasing salinity, the amount of proline, total soluble carbohydrates and total soluble protein as well as dry weight and Na+ concentration of the cells were increased, while their fresh weight and K+ concentration decreased. Three potato cultivars had different reactions to different levels of salinity. Sante cultivar has the highest accumulation of proline, total soluble carbohydrates, total soluble protein and potassium. This indicates that the above cultivar is more to lerant to salinity than the other cultivars.

کلیدواژه‌ها [English]

  • Suspension culture
  • Calli
  • Proline
  • Carbohydrate
  • Sodium chloride
حیدری شریف آباد، ح. 1380. گیاه، خشکی و خشکسالی. انتشارات مؤسسه تحقیقات جنگل‌ها و مراتع، تهران. 200 صفحه.

دانشمند، ف.، آروین، م. ج. و منوچهری کلانتری، خ. 1390. پاسخ گونه‌های سیب‌زمینی خودرو به تنش شوری در شرایط کشت درون‌شیشه‌ای. مجله زیست‌شناسی ایران، 24 (1): 65-78

دانشمند، ف. 1394. تأثیر آسکوربیک اسید در کاهش تنش اکسیداتیو حاصل از تنش شوری در سیب‌زمینی. مجله پژوهش‌های گیاهی (مجله زیست‌شناسی ایران)، 27 (3): 417-426.

Ahmad, R., Hussain, J., Jamil, M., Kim, M. M., Kwak, S.S., Maroof Shah, M., El-Hendawy, S. E., Al-Suhaibani, N. A. and Rehman, A. 2014. Glycinebrtaine synthesizing transgenic potato plants exhibit enhanced tolerance to salt and cold stresses. Pakistan Journal of Botany, 46 (6): 1987-1993.

Ali, P. S. 1999. Prolin accumulation protein patten and photosynthesis in bacopa monnida vegeneration grown under NaCl stress. Bioloyia Plantrum, 42 (1): 89-95.

Alvarez, L., Tomaro, L. M. and Benavides, P. M. 2003. Changes in polyamines, praline and ethylene in sunflower callus treated with NaCl. Plant Cell, Tissue and Organ Culture, 58: 67-72.

Amini, F. and Ehsanpour, A. A. 2005. Soluble proteins, proline, carbohydrates and Na/K changes in two tomato (Lycopersicon esculentum Mill.) cultivars under In vitro salt stress. African Journal of Biotechnology, 2 (5): 133-135.

Aqueel Ahmad, M. S., Javed, F. and Ashraf, M. 2007. Iso osmotic effect of NaCl and PEG on growth, cations and free proline accumulation in callus tissue of two Indica rice (Oryza sativa L.) genotypes. Plant Growth Regulation, 53: 53-63.

Arzani, A. and Mirodjagh, S. S. 1999. Response of dueum wheat cultivars to immature embryo culture callus induction and In vitro salt stress. Plant Cell, Tissue Organ Culture, 58: 67-72.

Aziz, A., Martin-Tanguy, J. and Larher, F. 1999. Salt stress-induced praline accumulation and changes in tyramine and polyamine levels are linked to ionic adjustment in tomato leaf discs. Plant Science, 145: 83-91.

Barakat, M. and Abdeei, T. H. 2005. In vitro selection of wheat callus tolerance high levels of salt and plant regeneration. Euphytica, 91 (2): 127-140.

Basu, S., Gangopahyaya, G. and Mukharjee, B. B. 2002. Salt tolerance in rice in vitro: Implicatio of accumulation of Na, K and praline. Plant Cell, Tissue and Organ Culture, 69: 55-64.

Bohnert, H. J. and shen, B. 1999. Transformation and compatible solutes. Scientia Horticulturae, 78: 237-260.

Bradford, M. 1976. A rapid and sensitive method for the quantitative estimation of microgram quantities of protein utilizing the principle of protein dye binding. Annals of Chinical Biochemistry, 72: 248-54.

Christophe, G., Tomader, E., Jamal, B., Mohamed, D.and Nadia, S. E.2006.Selection of callus cultures of sugarcane (Saccharum sp.) tolerant to NaCl and their response to salt stress. Plant Cell, Tissue and Organ Culture, 87: 1.

Debouba, M., Gouia, H., Valadier, M. H., Ghorbel, M. H. and Suzuki, A. 2006. Salinity-induced tissue-specific diurnal changes in nitrogen assimilatory enzymes in tomato seedlings grown under high or low nitrate medium. Plant Physiology and Biochemistry, 44: 409-419.

Delauney, A. J. and Verna, D. P. S. 1993. Proline biosynthesis and osmoregulation in plants. Plant Journal, 4: 215-223.

Demir, Y. and Oçalikan, I. 2002. Effect of NaCl and Proline on Bean Seedlings Cultured In vitro. Biologia Plantarum, 45: 4.

Elavumoottil, O. C., Martín, P. J. and Moreno, M. L. 2003. Changes in sugars, sucrose synthase activity and proteins in salinity tolerant callus and cell suspension cultures of Brassica oleracea L., Biologia Plantarum, 46: 1.

Farrukh, J. 2002. In vitro salt tolerance in Wheat. II. Organic solute accumulation in callus. International Journal of Agriculture and Biology, 4: 462-464.

Gandonou, Ch., Abrini, J. and Idaomar, M. 2005. Response of sugarcane varities to embryogenic callus induction and In vitro salt stress. Biotechnology, 4 (4): 350-354.

Grratan, S. R. and Grieve, G. M. 1999. Mineral nutrient acquisition and response by plants grown in saline environments. In: Hadbook of plant and crop stress. Pessarakli, M. (Ed). 203-229.

Heng-Logo, W., Ping-Du, L., Li-Fei, L. and Jong-Ching, S. 1999. Effect of sorbitol induced osmotic stress on the changes of carbohydrate and free amino acid pools in sweet potato cell suspension cultures. Botanica Bulletin-Academia Sinica Journal, 40: 219-225.

Homma, S. 2016. Effect of salinity stress on growth parameters of potato genotypes. African Journal of Basic and Applied Sciences, 8 (4): 185-192.

Jamil, M., Kim, M. D., Kwak, S. S., El-Hendawy, M. M. S. and Rehman, S. U. 2014. Glucinebetaine synthesizing transgenic potato plants exhibit enhanced tolerance to salt and cold stresses. Pakistan Journal of Botany, 46 (6): 1987-1993.

Jiang, L., Duan, L., Tian, X., Wang, B., Zhang, H., Zhang, M. and Li, Z. 2006. NaCl salinity stress decreased Bacillus thuringiensis (Bt) protein content of transgenic Bt cotton (Gossypium hirsutum L.) seedlings. Environmental and Experimental Botany, 55: 315-320.

Joseph, E. A., Radhakrishnam V. V .and Mohanan, K. V. 2015. A Study on the accumulation of proline-an osmoprotectant amino acid under salt stress in some native rice cultivars of North Kerala, India. Universal Journal of Agricultural Research, 3 (1): 15-22.

Juan, F., Oscar, A. and Margarita, R. 2007. Modulation of spermidine and spermine levels in maize seedlings subjected to long-term salt stress. Plant Physiology and Biochemistry, 45: 812-821.

Toriyama, k. 2005. Rice is life Scentific perspectives for the 21st century. Int. Rice Res. Inst, 133 pp.

Liu, T., Van Staden, J. and Cress W. A. C. 2000. Salinity induced nuclear and DNA degradation in meristematic cells of soybean (Glycine max (L.) cv. Aceme)) roots. Plant Growth Regulation, 30 (1): 49-54.

Lutts, S., Bouharmont, J. and Kinet, J. M. 1999. Physiological characterization of salt-resistance rice(Oryza sativa)somaclones. Australian Journal of Botany, 47: 835-849.

Mahmood, R. and Raziuddin, T. 2002. In vitro of salt on the vigor of potato (Solanum tuberosum L.) plantles. Biotechnology, 1: 2-4.

Mansour, M. M. F. 2000. Nitrogen containing compounds and adaptation of plants to salinity stress. Biologia Plantarum, 43: 491-500.

Misra, N. and Gupta, A. K. 2005. Effect of salt stress on praline metabolism in two high yielding genotypes of green gram. Plant science, 169: 331-339.

Monreal, J. A., Jimenez, E. T., Remesal, E., Morillo-Velarde, R., Garcıa-Maurino, S. and Echevarrıa, C. 2007. Proline content of sugar beet storage roots: Response to water deficit and nitrogen fertilization at field conditions. Environmental and Experimental Botany, 60: 257-267.

Murashige, T. and Skoog, F. 1962. A revised medium-for rapid growth and bioassays with tobacco tissue cultures. Physiologiae Plantarum, 15: 473-497.

Murshed, R., Najla, S., Albiski, F., Kassem, I., Jbour, M. and Al-Said, M. 2015. Using growth parameters for In-vitro screening of potato varieties tolerant to salt stress. Journal of Agricultural Science and Technology, 17: 483-494.

Niknam, V., Razavi, N., Ebrahimzadeh, H. and Sharifizadeh, B. 2006. Effect of NaCl on biomass, protein and proline contents, and antioxidant enzymes in seedlings and calli of two Trigonella species. Biologia Plantarum, 50: 4.

Noaman, M. M. and Ahmad, E. 2004. Development if Alfalfa tolerant salinity stress using organogenesis technique. Biotechnology, 3 (2): 136-139.

Ochatt, S. J., Marconi, P. L., Radice, S., Arnozis, P. A. and Caso, O. H. 1999. In vitro recurrent selection of potato: production and characterization of salt tolerant cell lines and plants. Plant Cell, Tissue and Organ Culture, 55: 1.

Paquin, R. and Lechasser, P. 1979. Observation sur une method de dosage de la proline libre dans les extraits de plants. Canadian Journal of Botany, 57: 1851-1854.

Patade, V. Y., Suprasanna, P. and Bapat, V. A. 2006. Selection for abiotic (salinity and drought) stress tolerance and molecular characterization of tolerance lines in sugarcane. The National Conference on Biotechnological Aspects Towards Cultivation, Utilization and Disease Management of Plants. Issue. 273.

Patade, V. Y., Suprasanna, P. and Bapat, V. A. 2008. Effects of salt stress in relation to osmotic adjustment on sugarcane (Saccharum officinarum L.) callus cultures. Plant Growth Regulation, 55: 169-173.

Patricia, L. M. and Maria, P. B. 2001. Growth and physiological characterization of regeneration potato plants affected by NaCl stress. Journal of Crop and Horticultural Science, 29: 45-50.

Paulino de Oliveira, C., Zanuto Douradinho, G., Bortolazzo, G. and Fábio Steiner, F. 2016. Initial sprout growth of potato seed minitubers under salt stress. Revista de Agricultura Neotropical, Cassilândia-MS, 3 (1): 7-10.

Pérez-Salamó, L., Boros, B. and Szabados, L. 2016. Screening stress tolerance traits in Arabidopsis cell cultures. Environmental Responses in Plants,: 235-246.

Piqueras, A., Hernández, J., Olmos, E., Hellín, E. and Sevilla, F. 1996. Changes in antioxidant enzymes and organic solutes associated with adaptation of citrus cells to salt stress. Plant Cell, Tissue and Organ Culture, 45: 1.

Potluri Sasikala, D. P. and Devi Prasad, P. V. 2002. Salinity effect on In vitro performance of some cultivars of potato. Revista Brasileira de Fisiologia Vegetal, 6 (1): 1-6.

Rahnama, H. 2004. The effect of NaCl on proline accumulation potato seeding and calli. Acta Physiologiae Plantarum, 26 (3): 263-270.

Rai, M. K., Kalia, R. K., Singh, R., Gangola, M. P. and Dhaean, A. K. 2011. Developing stress tolerant plants through In vitro selection-An overview of the recent progress. Enviromental and Experimental Botany, 71 (1): 89-98.

Ramagopal, S. 1986. Protein synthesis in a maize callus exposed to NaCl and mannitol. Plant Cell Reports, 5 (6): 430-434.

Saleem, M. Y. and Mukhtar, M. 2005. Induced mutation and In vitro techniques as a method to induce salt tolerance in Basmati rice(Oryza sativa L.).Int. J. Environ. Sci. Tech., 2 (2): 141-145. .

Seth, R. and Kendurkar, S. V. 2015. In vitro screening: An effective method for evaluation of commercial cultivars of tomato towards salinity stress. International Journal of Current Microbiology and Applied Sciences, 4 (1): 725-730.

Shah Zaman, M., Ali, G. M., Muhammad, A., Farooq, Kh. and Hussain, I. 2015. In vitro screening of salt tolerance in potato (Solanum tuberosum L.) varieties. Sarhad Journal of Agriculture, 31 (2): 106.

Shamima, N., Monzur, M. and Anjumanra, K. 2003. Induction and evalution of somaconal variation in potato. Biological Science, 3 (2): 183-190.

Shibli, R. A., Kushad, M., Yousef, G. G. and Lila, M. 2007. Physiological and biochemical responses of tomato micro shoots to induced salinity stress with associated ethylene accumulation. Plant Growth Regulation, 51: 159-169.

Silva, J., Otoni, W. C., Martinez, C. A., Dias, L. M. and Silva, M. A. P. 2001. Microtuberization of Andean potato species (Solanum spp.) as affected by salinity. Scientia Horticulturae, 89: 91-101.

Summart, J., Thanomkeo, P., Panichajakul, P. and McManus, M. T. 2010. Effect of salt stress on growth, inorganic ion and proline accumulation in Thai aromatic rice, Khao Dawk Mali 105, callus culture. African Journal of Biotechnology, 9 (2): 145-152.

Teixeira, J., Pereira, S., Queirós, F. and Fidalgo, F. 2006. Specific roles of potato glutamine synthetase isoenzymes in callus tissue grown under salinity: molecular and biochemical responses. Plant Cell, Tissue and Organ Culture, 86 (1): 1-7.

Teixeira, J., Pereira, S., Queirós, F. and Fidalgo, F. 2006. Specific roles of potato glutamine synthetase isoenzymes in callus tissue grown under salinity: molecular and biochemical responses. Plant Cell, Tissue and Organ Culture, 86: 1.

Veraplakorn, V., Nanakorn, M., Kaveeta, L, Suwanwong, S. and Bennett, I. J. 2013. Variation in ion accumulation as a measure of salt tolerance in seedling and callus of Stylosanthes guianensis. Theoretical and Experimental Plant Physiology, 25 (2): 106-115.

Wang, Z., Quebedeaux, B. and Stutte, G. W. 1996. Partitioning of (14C) glucose into sorbitol and other carbohydrates in apple under water stress. Australian Journal of Plant Physiology, 23: 245-251.

Westterma, L. R. and Constabel, F. 1990. Plant tissue culture metbods 2deev. Ed. Sasatoon: National Research Council of Canada, Prairie Regional Laboratory.

Zhang, Y., Abdulnour, J. E., Donelly, D. J. and Barthakur, N. N. 2001. Effects of NaCl stress on yield of potato plants derived from previously saline conditions. HortScience, 36: 770-771.