تأثیر آسکوربیک‌اسید و سالیسیلیک‌اسید روی برخی از خصوصیات فیزیولوژیکی گلرنگ تحت شرایط تنش شوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد گروه زراعت و اصلاح زراعت، دانشکده کشاورزی، دانشگاه یاسوج، یاسوج، ایران

2 دانشیار گروه زراعت و اصلاح زراعت، دانشکده کشاورزی، دانشگاه یاسوج، یاسوج، ایران

3 دانشجوی دکتری گروه زراعت و اصلاح زراعت، دانشکده کشاورزی، دانشگاه یاسوج، یاسوج، ایران

چکیده

به‌منظور بررسی تأثیر سطوح مختلف آسکوربیک‌اسید و سالیسیلیک‌اسید بر خصوصیات فیزیولوژیک گلرنگ رقم صفه تحت تنش شوری یک آزمایش گلدانی در گلخانه تحقیقاتی گروه زراعت و اصلاح نباتات دانشگاه یاسوج در سال 1391 انجام شد. این پژوهش به‌صورت آزمایش فاکتوریل در قالب طرح پایه کاملاً تصادفی در سه تکرار اجرا گردید. عامل اول شامل شوری با 3 سطح (صفر، 90 و 180 میلی‌مولار NaCl) و عامل دوم شامل محلول‌پاشی با پنج سطح (سالیسیلیک‌اسید 5/0 میلی‌مولار، سالیسیلیک‌اسید 1 میلی‌مولار، آسکوربیک‌اسید 200 پی‌پی‌ام، آسکوربیک‌اسید 400 پی‌پی‌ام و شاهد یا عدم محلول‌پاشی) بودند. نتایج نشان داد که افزایش غلظت نمک (کلرید‌سدیم) موجب کاهش میزان کلروفیل کل، محتوای نسبی آب و پتاسیم برگ و افزایش پرولین، قندهای محلول، نشت الکترولیت‌ها، میزان مالون‌دی‌آلدهید و سدیم برگ شد. محلول‌پاشی با آسکوربیک‌اسید 400 پی‌پی‌ام و سالیسیلیک‌اسید 5/0 و 1 میلی‌مولار موجب افزایش میزان پرولین، قندهای محلول، کلروفیل و پتاسیم برگ و کاهش میزان نشت الکترولیت‌ها، مالون‌دی‌آلدهید و سدیم برگ شد ولی تأثیری بر محتوی نسبی آب برگ نداشت. براساس نتایج به‌دست‌آمده می‌توان اظهار داشت که محلول‌پاشی با سالیسیلیک‌اسید و آسکوربیک‌اسید از طریق افزایش میزان پرولین و قندهای محلول و هم‌چنین کاهش میزان نشت الکترولیت‌ها و میزان سدیم برگ موجب تعدیل اثرات سوء تنش شوری بر گلرنگ می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Ascorbic Acid and Salicylic Acid on Some Physiological Characteristics of Safflower Under Salinity Stress

نویسندگان [English]

  • Leila Jafari 1
  • Alireza Yadavi 2
  • Mohsen Movahedi Dehnavi 2
  • Hamidreza Balouchi 2
  • Eisa Maghsoudi 3
1 MSc Graduated, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran
2 Associate Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran
3 PhD Student, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran
چکیده [English]

In order to investigate the effect of different levels of ascorbic acid and salicylic acid on physiological characteristics of safflower (Sofeh cv.) under salinity stress, a pot experiment was conducted in research greenhouse of agronomy and plant breeding department of Yasouj university in 2012. This experiment was carried out as a factorial in based on completely randomized design with three replications. Experimental factors consisted of salinity with three levels (0, 90 and 180mM NaCl) and foliar application with five levels including salicylic acid (0.5 and 1mM), ascorbic acid (200 and 400ppm)and control (without foliar application). The results indicated that increasing the salt concentration (Sodium chloride) lead to decreased total chlorophyll content, relative water content and potassium of leaf and increased prolin, soluble carbohydrate, electrolyte leakage, malondialdehid and sodium of leaf. Foliar application of 400 ppm ascorbic acid and 0.5 and 1mM salicylic acid increased prolin, soluble carbohydrate, chlorophyll and potassium of leaf and decreased electrolyte leakage, malondialdehid and sodium of leaf significantly but it had not effect on relative water content of leaf. Based on obtained result can stated that foliar by salicylic acid and ascorbic acid via increasing prolin and soluble carbohydrate and also decresed electrolyte leakage and sodium of leaf caused moderate the adverse effects of salinity stress on the safflower.

کلیدواژه‌ها [English]

  • Potassium
  • Prolin
  • Sodium
  • Chlorophyll
  • Relative water content
باقری، ع. و محمد علی‌پور، ز. 1390. اثر سالیسیلیک اسید بر اجزاء عملکرد و رشد سویا تحت شرایط تنش شوری. مجله اکوفیزیولوژی گیاهی، 3 (8): 41-29.
جوادی‌پور، ز.، موحدی‌دهنوی، م. و بلوچی، ح. ر. 1391. تغییرات میزان پرولین، قندهای محلول، گلیسین بتائین و پروتئین محلول برگ شش رقم گلرنگ بهاره (Carthamus tinctorius L.) تحت تنش شوری. فرآیند و کارکرد گیاهی، 1 (2): 24-13.
خواجه‌پور، م. ر. 1385. گیاهان صنعتی. انتشارات جهاد دانشگاهی دانشگاه اصفهان، 580 صفحه.
دولت آبادیان، ا.، مدرس‌ثانوی، س. ع. م. و شریفی، م. 1388. اثر تغذیه برگ با آسکوربیک‌اسید بر فعالیت‌های آنزیم‌های آنتی‌اکسیدان، تجمع پرولین و لیپید پراکسیداسیون کلزا ((Brassica napus L. در شرایط تنش شوری. مجله علوم و فنون کشاورزی و منابع طبیعی، 13 (47): 620-611.
صفاری، ر.، مقصودی‌موعود، ع. ا. و صفاری، و. ر. 1392. اثر تنش شوری بر فلورسانس کلروفیل و عملکرد دانه برخی ارقام آفتابگردان (Helianthus annuus L.). مجله به‌زراعی نهال و بذر، 29 (1): 130-109.
قربانلی، م. و نیاکان، م. 1384. بررسی اثر تنش خشکی بر روی میزان قندهای محلول، پروتئین، ترکیبات فنلی و فعالیت آنزیم نیترات ردوکتاز گیاه سویا رقم گرگان 3، نشریه دانشگاه تربیت معلم. دانشگاه آزاد اسلامی واحد گرگان، 5 (1): 550-537.
ملک‌احمدی، ف.، منوچهری‌کلانتری، خ. و ترک‌زاده، م. 1384. اثر تنش غرقابی بر القای تنش اکسیداتیو و غلظت عناصر در گیاه فلفل. مجله زیست‌شناسی ایران، 18 (2): 119-110.
ناجاکار، ن.، خدادادی، ا. ا.، تاج‌بخش، م. و اکبری، غ. 1385. تأثیر تنش شوری بر کربوهیدرات‌های محلول و کلروفیل و محتوای یونی ارقام گندم بهاره. نهمین کنگره علوم زراعت و اصلاح نباتات ایران، پردیس ابوریحان، تهران.
وحدتی مشهدیان، ن.، تهرانی فر، ع.، سلاح ورزی، ی. و طبسی، ع. 1394. اثر پیش­تیمار اسید سالیسیلیک و اسید آسکوربیک بر جوانه زنی بذر شبدر سفید و قرمز تحت شرایط تنش شوری. تنشهای محیطی در علوم زراعی، 8 (1): 130-127.
Arnon, D. I. 1967. Copper enzyme in isolated chloroplast and polyphenoloxidase in Beta vulgaris. Plant Phsiology, 24 (1): 15-20.
Ashraf, M. and Oleary, M. W. 1996. Response of some newly developed salt tolerant genotypes of spring wheat to salt stress. I. yield components and ion distribution. Journal of agronomy and crop science, 176: 91-101.
Ashraf, M. and Tufail, M. 1995. Variation in salinity tolerance in sunflower (Helianthus annuus L.). Journal of Agronomy and Soil Sciences, 174: 351-362.
Beltrano, J. and Ronco, M. G. 2008.Improved tolerance of wheat plants (Triticum aestivum L.) to drought stress and rewatering by the arbuscular mycorrhizal fungus Glomus claroideum: effect on growth and cell membrane stability. Brazilian Journal of Plant Physiology, 20: 29-31.
Dolatabadian, A. and  Saleh Jouneghani, R. 2008. Impact of exogenous ascorbic acid on antioxidant activity and some physiological traits of common bean subject to salinity stress. Notulae Botanica Hortle Agrobotanical, 37: 165-172.
Ebrahimian, E. and Bybordi, A. 2012. Effect of salinity, salicylic acid, silicium and ascorbic acid on lipid peroxidation, antioxidant enzyme activity and fatty acid content of sunflower. African Journal of Agricultural Research, 7 (25): 3685-3694.
El-Tayeb, M. A. 2005. Response of barley gains to the interactive effect of salinity and salicylic acid. Plant Growth Regulation, 45: 215-225.
Geholt, H. S., Purohit, A. and Shekhawat, N. S. 2005. Metabolic changes and protein patterns associated with adaptation to salinity in Sesamun indicum cultivars. Journal of Cell and Molcular and Biological, 4: 31-39.
Hao, J. H., Dong, C. J. Zhang Z. G., Wang, X. L. and Shang, Q. M. 2012. Insights into salicylic acid responses in cucumber (Cucumis sativus L.) cotyledons based on a comparative proteomic analysis. Plant Science, 187: 69- 82.
He, Y. and Zhu, Z. J. 2008. Exogenous salicylic acid alleviates NaCl toxicity and increases antioxidative enzyme activity in Lycopersicon esculentum. Biological Plantarum, 4: 792- 795.
Heath, R. L. and Pacher. L. 1968. Photo peroxidation in isolated chloroplast Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochemical Biophysics, 125: 189-198.
Ho, S., Chao, Y., Tong, W. and Yu, S. 2001. Sugar coordinately and differentially regulates growth and stress-related gene expression via a complex signal transduction network and multiple Control mechanisms. Plant  Physiology, 46: 281-285.
Hoagland, D. R. and Arnon, D. I. 1950. The water- culture for growing plants without soil. Berkeley, Calif. : College of Agriculture, University of California, 39 p.
Irigoyen, J. J., Emerich, D. W. and Sanchez-Diaz, M. 1992. Water stress induced changes in concentrations of  proline and total soluble sugars in nodulated alfafa (Medicago sativa) plants. Physiological Plantarun, 84: 55-60.
Khadri, M., Tejera, N. and Liuch, C. 2006. Alleviation of salt stress in common bean (phaseolus vulgaris) by exogenous abscisic acid supply. Journal of Plant Growth Regulation, 25: 110-119.
Mishra, A. and Choudhuri, M. A. 1999. Effects of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice. Biologia Plantarum, 42: 409-415.
Mostajeran, A. and Rahimi, V. 2009. Effects of drought stress on growth and yield of Rice (Oryz sativa L.) cultivars and accumulation of prolin and soluble sugars. American Eurasian Journal Agriculture and Environment Science, 5: 264-272.
Paknejad, F., Nasri, M., Tohidi Moghadam, H. R., Zahedi, H. and Jami Alahmad, M. 2007. Effects of drought stress on chlorophyll fluoresence parameters chlorophyll content and grain yield of wheat cultivars. Journal of Biological Science, 7 (6): 841-847.
Paquine, R. and Lechasseur, P. 1979. Observations sur une methode de dosage de la proline libre dans les extraits de plantes. Canadian Journal of Botany, 57: 1851-1854.
Patterson, B., Macrae, E. and Ferguson, I. 1984. Estimation of hydrogen peroxide in plant extracts using titanium (IV). Analytical Biochemistry, 139: 487-492.
Shakirova, F. M., Sakhabutdinova, A. R., Bezrukova, M. V., Fatkhutdinova, R. A. and fatkhutdinova, D. R. 2003. Changes in the hormonal status of wheat seedling induced by salicylic acid and salinity. Plant Science, 164: 317-322.
Shalata, A. and Neumann, P. M. 2001. Exogenous ascorbic acid (Vitamin C) increases resistance to salt stress and reduces lipid peroxidation. Journal of Experiment Botany, 52: 2207-2211.
Sheteawi, S. A. 2007. Improving growth and yield of salt stressed soybean by exogenous application of jasmine acid and ascorbic. International Journal of Agriculture and Biology, 9 (3): 473-478.
Upadhyaya, H. and Panda, S. K. 2004. Responses of Camellia sinensis to drought and rehydration, Biologia Plantarum, 48: 597-600.