تأثیر کاربرد بقایای گندم (.Triticum aestivum L) و لوبیا (.Phaseolus vulgaris L) و سولفات روی بر عملکرد و برخی ویژگی‌های شیمیایی دانه گندم

نوع مقاله : مقاله علمی-پژوهشی

نویسندگان

1 مربی گروه علوم زراعی، دانشکده کشاورزی، دانشگاه پیام نور، تهران، ایران

2 استاد، گروه زراعت، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

3 دانشجوی دکتری گروه خاکشناسی، دانشکده کشاورزی، دانشگاه آزاد اسلامی، واحد اهواز، اهواز، ایران

4 دانشجوی دکتری گروه زراعت، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

به‌منظور ارزیابی اثر بقایای گندم (Triticum aestivum L.) و لوبیا (Phaseolus vulgaris L.) به‌همراه سولفات روی در مزارع گندم بر میزان عملکرد، غلظت روی، پروتئین و اسید فیتیک دانه گندم، آزمایشی در سال زراعی 1392-1391 در یکی از مزارع شهرستان دهاقان در استان اصفهان در قالب طرح بلوک‌های کامل تصادفی در سه تکرار با شش تیمار (شاهد، سولفات روی، بقایای گندم، بقایای لوبیا، بقایای گندم + روی و بقایای لوبیا + روی) به اجرا در آمد. نتایج تجزیه واریانس بیانگر اختلاف معنی‌دار اثر تیمارهای مختلف آزمایشی بر عملکرد، غلظت روی، غلظت اسید فیتیک، نسبت مولی اسید فیتیک به روی و پروتئین دانه گندم بود. نتایج به‌دست‌آمده نشان داد که به‌ترتیب بالاترین میزان عملکرد (8/3 تن در هکتار)، پروتئین (3/10%) و غلظت روی دانه (36 میلی‌گرم در کیلوگرم) مربوط به تیمار بقایای لوبیا + روی و کم‌ترین میزان آن‌ها مربوط به تیمار شاهد (8/2 تن در هکتار)، (54/7%) و (26 میلی‌گرم در کیلوگرم) بود. کاربرد بقایای گیاهی در تمامی تیمارهای موردبررسی مخصوصاً تیمار بقایای لوبیا + روی باعث کاهش 36 درصدی نسبت مولی اسید فیتیک به روی نسبت به تیمار شاهد شد. در بین بقایای گیاهی، بقایای لوبیا دارای کم‌ترین میزان (4/15) نسبت کربن به نیتروژن بود. در مجموع نتایج نشان داد که در شرایط آزمایش حاضر، تیمار بقایای لوبیا + روی با بالاترین میزان عملکرد، غلظت روی و پروتئین دانه و کم‌ترین میزان نسبت مولی اسید فیتیک به روی برتر از سایر تیمارهای دیگر موردبررسی بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Wheat (Triticum aestivum L.) and Bean (Phaseolus vulgaris L.) Residues and Zinc Sulfate Application on Yield and some Chemical Characteristics of Wheat Grain

نویسندگان [English]

  • Abolfazl Baghbani Arani 1
  • Seyed Ali Mohammad Modares Sanavi 2
  • Amir Kadkhodai 3
  • Mahmood Mohammadi 4
1 Instructor, Department of Agronomy Science, Faculty of Agriculture, Payam Noor University, Tehran, Iran
2 Professor, Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
3 PhD Student, Department of Soil Sciences, Faculty of Agriculture, Islamic Azad University, Ahvaz Branch, Ahvaz, Iran
4 PhD Student, Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
چکیده [English]

In order to evaluate the effects of wheat (Triticum aestivum L.) and bean (Phaseolus vulgaris L.) residues with the application of zinc sulfate farms on zinc, protein, phytic acid concentration in wheat grain and grain yield of wheat, an experiment was conducted in the growing season of 2012-2013 in Dehaghan city farms in Isfahan through a complete randomized block design in three replications with six treatments (control, zinc sulfate, wheat residue, bean residue, wheat residue + zinc sulfate and bean residue + zinc sulfate). Results of ANOVA showed there were significant difference in the effect of experimental treatments on yield, zinc and phytic acid concentration, phytic acid to zinc molar ratio and protein content of wheat grain. The results showed that the highest yield (3.8 ton ha-1), protein (10.3%) and grain zinc concentration (36mg.kg-1) was related to bean residues + zinc sulfate treatment and the lowest yield was belonged to control treatment (2.8ton.ha-1), (7.54%) and (26mg.kg-1), respectively. The plant residues application, particularly bean residues + zinc sulfate reduced the molar ratio of phytic acid to zinc compared to the control (36%). Amongst the plant residues, bean residues had the lowest value of carbon to nitrogen ratio (15.4). Finally, in the current research conditions, bean residues + zinc sulfate treatment was higher compared to the other treatments having considerable in this experiment with the highest zinc, protein, phytic acid in wheat grain, phytic acid to zinc molar ratio and yield.

کلیدواژه‌ها [English]

  • Phytic acid concentration
  • Plant residues
  • Protein
  • Zinc
اله‌دادی، ا.، معماری، ع.، اکبری، غ. ع. و لطفی‌فر، ا. 1390. تأثیر کاربرد مقادیر مختلف کمپوست زباله شهری بر خصوصیات و غلظت عناصر غذایی خاک و رشد و عملکرد ذرت علوفه‌ای. فن‌آوری تولیدات گیاهی، 11 (1): 97-83.
خیام‌باشی، ب .1376. اثر استفاده از لجن فاضلاب به‌عنوان کود در آلایش و انباشت عناصر سنگین در خاک و گیاه. پایان‌نامه کارشناسی‌ارشد در رشته خاکشناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.
سدری، م. ح. و ملکوتی م. ج. 1379. بررسی تأثیر مصرف آهن، روی و مس در بهبود خصوصیات کمی و کیفی گندم آبی. نشر آموزش کشاورزی .169-189.
درستکار، و.، افیونی، م. و خوشگفتارمنش، ا. م. 1392. تأثیر کاربرد بقایای برخی گیاهان پیش کاشت بر غلظت کل و قابل‌جذب روی و غلظت اسید فیتیک در دانه گندم. مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک، 17 (64): 93-81.
ملکوتی، م. ج.، کشاورز، پ. و کریمیان، ن .1387. روش جامع تشخیص و توصیه بهینه کود برای کشاورزی پایدار. چاپ هفتم. انتشارات دانشگاه تربیت مدرس تهران. 755 صفحه.
ملکوتی، م. ج.، و مجیدی، ع. 1377. بررسی اثرات مقادیر و منابع روی بر عملکرد و توازن تغذیه‌ای گندم پاییزه، مجله علوم خاک و آب، 17 (2): 122-129.
Alberta, E. 1995. Stubble Burning. Columbia Basin Agricultural Research, Annual Report, pp. l05-109.
Bansal, R. L., Taklear, P. N., Bhandari A. L. and Rana, D. S. 1990. Critical levels of DTPA extractable Zn for wheat in alkaline soils of semiarid region of Punjab, India. Fertilizer Research, 21 (3): 163-166.
Black, C. A., Evans, D. D., White, J. L., Ensminger, L. E. and Clark, F. E. 1965. Methods of soil analysis: Part 2. Agron Monogram 9. ASA, Madison, WI.
Cakmak, I. 2008. Enrichment of cereal grains with zinc: Agronomic or genetic bio fortification. Plant and Soil, 302 (1-2): 1-17.
Calvino, P. A. and Sandra’s, V. O. 2003. Quantification of environmental management effect on the yield of late sown soybean. Field Crop Research, 83: 67-77.
De Neve, S., Gaona Sa´ez, S., Chaves Daguilar, B., Sleutel, S. and Hofman, G. 2004. Manipulating N mineralization from high N crop residues using on- and off-farm organic materials. Soil Biology and Biochemistry, 36: 127-134.
Eghbal, B., Giinting, D. and Gilley, J. 2004. Residual effects of manure and compost application on com production and soil properties. Agronomy Journal, 96: 442-447.
Frossard, E., Bucher, M., Machler, F., Mozafar, A. and Hurrell, R. 2000. Potential for increasing content and bioavailability of Fe, Zn and Ca in plants for human nutrition. Journal Science Food and Agriculture, 80: 861-879.
Gee, G. W. and Bauder, J. W. 1986. Particle-size analysis. PP. 383-409. Methods of Soil Analysis. Part 1. 2nd ed., Madison, WI, Agron. ASA, SSSA. 10.
Habibi, H. 2010. Effect of cultivation on some soil chemical properties and growth, yield and zinc concentration in wheat grain. MSc thesis, Faculty of Agriculture, University of Technology, Isfahan, Iran.
Heydari, A. 2003. Soil fertility improvement by stubbles management and soil tillage in grain corn wheat rotation system. Proceedings of 8th Soil Science Congress of Iran.
Hotz, C. and Brown, K. H. 2004. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutrien Bulltien. 25: 94-204.
Khoshgoftarmanesh, A. H., Schulin, R., Chaney, R. L., Daneshbakhsh, B. and Afyuni, M. 2010. Micro nutrient efficient genotypes for crop yield and nutritional quality in sustainable agriculture. A review. Agronomy for Sustainable Development, 30: 83-107.
Lindsay, W. L. and Norvell, W. A. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society American Journal, 43: 421-428.
Makower, R. U. 1970. Extraction and determination of phytic acid in beans. Cereal Chemistry, 47: 288-294.
Mameesh, M. S. and Tomar, M. 1993. Phytate content of some popular Kuwaiti foods. Cereal Chemistry, 70: 502-503.
Marschner, H. 1995. Mineral nutrition of higher plants. Academic Press London. pp. 313-323.
Mc Ghie, W. J. and Jacobs, B. 1985. The impact of contribution of bacterial and fungal microbial biomass. Canadian Journal of Microbiology, 21: 314-322.
Milani, P. M., Malakouti, M. J., Khademi, Z., Balali, M. R. and Mashayekhi, M. 1998. A Fertilizer Recommendation Model for the Wheat Field of Iran. Soil and Water Research Institute, Tehran, 7 (3): 112-123.
Narwal, R. P. and Singh, B. R. 1998. Effect of organic materials on partitioning, extractability and plant uptake of metals in an alum shale soil. Water Air Soil Pollution, 103: 405-421.
Nash, V. E. and Baligay, V. C. 1974. The growth of soybean roots in relation to soil micro morphology. Plant and Soil, 41: 81-89.
Nelson, D. W. and Sommers, L. E. 1982. Total carbon, organic carbon, and organic matter. In: Methods of soil analysis. Part 2. Madison, WI, Agron. ASA, SSSA.
Nitika, D. and Ketarpaul, N. 2008. Physico - chemical characteristics, Nutrient composition and consumer acceptability of wheat varieties grown under organic and inorganic farming condition. International Journal of Food Sciences and Nutrition, 59: 224-245.
Peck, A. W., McDonald, G. K. and Graham, R. D. 2008. Zinc nutrition influences the protein composition of flour in bread wheat (Triticum aestivum L.). Journal Cereal Science, 47: 266-274.
Prasad, B. 1999. Conjoint use of fertilizers with organics, crop residues and green manuring for their efficient use in sustainable crop production. Fertilizer Research, 44: 67-73.
Prasad, B. and Sinha, S. K. 1995. Nutrient recycling through crop residues management for sustainable rice and wheat production in calcareous soil. Fertilizer Research, 40: 11-15.
Raj, H. and Gupta, V. K. 1986. Influence of organic manures and zinc on wheat yield and Zn concentration in wheat. Agriculture Wastes, 16: 255-263.
Rezaei, M. and Asadi, A. 2001. Soil tillage and stubble management effects on soil aggregates stability. Proceedings of 8th Soil Sciences Congress of Iran.
SAS Institute Inc. 2002. The SAS System for Windows, Release 9.0. Statistical Analysis 810 Systems Institute, Cary. NC. USA.
Schulin, R., Khoshgoftarmensh, A., Afyuni, M., Nowack, B. and Frossard, E. 2008. Effect of soil management on Zn uptake and its bioavailability in plants. In: Banuelos, G. S. and Lin, Z., (Eds.), Development and Uses of Bio fortified Agricultural Products. CRC Press. Boca Raton, FL.
Singh, G., Natesan, S. K. A., Singh, B. K. and Usha, K. 2005. Improving Zinc efficiency of cereals under zinc deficiency. Current Science, 88: 36-44.
USEPA, 1995. Method 3051: Microwave assisted acid digestion of sediments, sludges, soils, and oils. Available online at http://www.epa.gov/SW-846/pdfs/3051.pdf (verified 22 July 2004). USEPA, Washington, DC.
Verma, T. S. and Bhagat, R. M. 1992. Impact of rice straw management practices on yield, nitrogen uptake and soil properties in a wheat-rice rotation in northern India. Fertilizer Research, 33: 97-106.
Wanchez-monedaro, M. A., Roig, A., Paredes, C. and Bernal, M. P. 2001. Nitrogen transformation during organic Waste composting by the Rutgers system and its effects on pH, EC and maturity of composting mixtures. Bioresource Technology, 78: 301-308.
White, P. J. and Broudly, M. R. 2005. Bio fortifying crops with essential mineral elements. Trends in Plant Science, 10: 586-593.
Wissuma, M., Ismail, A. M. and Graham, R. D. 2007. Rice grain zinc concentrations as affected by genotype, native soil-zinc availability, and zinc fertilization. Plant and Soil, 306: 37-48.
World Health Organization. 2002. The world health report. Reducing risks, promoting healthy life’s. Geneva: World Health Organization.
Yousefzadeh, S., Modarres-Sanavy, S. A. M. and Baghbani Arani, A. 2016. Effect of biofertilizers, azocompost and nitrogen on the soil properties and yield of essential oil of Dracocephalum moldavica L. Journal Agroecology, 5 (2): 37-50.
Yilmaz, A., Ekiz, H., Torun, B., Guttekin, I., Karanlik, S., Bagci, S. A. and Cakmak, I. 1997. Effect of different zinc application methods on grain yield and zinc concentration in wheat cultivars grown on zinc deficient calcareous soils. Journal of Plant Nutrient, 20: 461-471.
Zhao, F. J. and McGrath, S. P. 2009. Bio fortification and phyto remediation. Current Opinion in Plant Biological, 12: 373-380.