بررسی تغییرات رشدی گیاه کاهو (Lactuca sativa) رقم (Green Tower Mi) تحت تیمار قارچ زیستی تریکودرما و ورمی‌کمپوست

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم باغبانی دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 استادیار، گروه علوم باغبانی دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

3 دانشیار، گروه علوم باغبانی دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد،

چکیده

قارچ تریکودرما و ورمی‌کمپوست، از عوامل مهم بهبوددهنده و محرک غیرمستقیم رشد در انواع گیاهان زراعی و باغی می‌باشند. این پژوهش به‌صورت آزمایش فاکتوریل بر پایه طرح کاملاً تصادفی، تحت شرایط کشت بدون خاک در گلخانه، با 4 غلظت قارچ تریکودرما هاریزیانوم جدایه Bi: 0 درصد (شاهد)، 10 درصد، 20 درصد و 30 درصد حجم 60 لیتری آب مصرفی و دو سطح ورمی‌کمپوست: شاهد (عدم استفاده از ورمی‌کمپوست) و 50 درصد حجم گلدان (کوکوپیت و پرلیت (۲:۱)) با 6 تکرار با بررسی تأثیر بر خواص مورفولوژیکی گیاه کاهو رقم (Green Tower Mi) پایه‌ریزی و اجرا شد. وزن‌تر ساقه، برگ و ریشه براساس نتایج حاصل در تیمار غلظت 10 درصد قارچ به‌ترتیب در بیش‌ترین سطح 75/363 گرم، 08/325 گرم و 35/26 گرم مشاهده شد. هم‌چنین در تیمار کاربرد ورمی‌کمپوست، بیش‌ترین وزن‌تر ساقه (41/377 گرم)، وزن‌تر برگ (87/348 گرم) و وزن‌تر ریشه (11/24 گرم) را نسبت به عدم کاربرد داشت. بیش‌ترین تعداد برگ (36عدد)، قطر ساقه (64/20 میلی‌متر) و سطح برگ (25/211 سانتی‌مترمربع بر گرم) در تیمار قارچ با غلظت 10 درصد مشاهده شد. فعالیت آنتی‌اکسیدانی گیاه کاهو تحت تیمار با ورمی‌کمپوست نسبت به تیمار شاهد به میزان ۳۴/۲۵ درصد افزایش یافت. بنابراین، با اثر مثبتی که در کاربرد ورمی‌کمپوست و قارچ تریکودرما بر روی خواص رشدی گیاه کاهو داشت، استفاده از این دو تیمار در کاشت این سبزی توصیه می‌شود. هم‌چنین به‌دلیل این‌که بین سطوح بالا قارچ تفاوت معنی‌داری نبود، می‌توان با صرفه‌جویی و هزینه کم‌تر، حتی با غلظت 10 درصد قارچ به نتیجه دلخواه و مطلوب رسید.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Growth Changes of Lettuce (Lactuca sativa) Cultivar (Green Tower Mi) under the Treatment of Trichoderma and Vermicompost

نویسندگان [English]

  • Shahabaldin Ahooi 1
  • Ladan Ajdanian 1
  • Hossein Nemati 2
  • Hossein Aroeei 3
1 PhD Student,, Department of Horticultural Siences, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
2 Assistant Professor, Department of Horticultural Siences, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
3 Associate Professor, Department of Horticultural Siences, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

Trichoderma and vermicompost are important factors in improving and indirect growth stimulants in a variety of crops and orchards. This study is a factorial experiment based on a completely randomized design, under soilless cultivation conditions in the greenhouse, with 4 concentrations of Trichoderma harizianum isolate Bi: 0% (control), 10%, 20%, and 30% by volume of 60 liters of water and two levels of vermicompost: Control (no use of vermicompost) and 50% of pot volume (cocopeat and perlite (2:1)) with 6 replications were established by studying the effect on morphological properties of lettuce cultivar (Green Tower Mi). The highest weight of stem, leaf, and root based on the results of the 10% fungus concentration treatment was observed at the highest levels of 363.75 g, 325.08 g, and 26.35 g, respectively. Also, in the application of vermicompost, the heavier stem fresh weight (377.41 g), leaf fresh weight (348.87 g), and root fresh weight (24.11 g) had the highest weight compared to non-application. The highest number of leaves (36), stem diameter (20.64 mm), and leaf area (211.25 cm-2 g) were observed in fungal treatment with a concentration of 10%. The antioxidant activity of lettuce treated with vermicompost increased by 25.34% compared to the control. Therefore, with the positive effect of vermicompost and Trichoderma on the growth properties of lettuce, the use of these two treatments in planting this plant is recommended. Also, because there was no significant difference between the high levels of the fungus, it is possible to achieve the desired result with fewer savings and costs, even with a concentration of 10% fungus.

کلیدواژه‌ها [English]

  • Growth improvement
  • Fungi
  • Lettuce
  • Biostimulants
Arancon, N., Edwards, C. and Bierman, P. 2006. Influences of vermicomposts on field strawberries: Part 2. Effects on soil microbiological and chemical properties. Bioresource technology, 97 (6): 831-840.
Arancon, N. Q., Galvis, P. A. and Edwards, C. A. 2005. Suppression of insect pest populations and damage to plants by vermicomposts. Bioresource technology, 96 (10): 1137-1142.
Argüello, J. A., Ledesma, A., Núñez, S. B., Rodríguez, C. H. and Goldfarb, M. d. C. D. 2006. Vermicompost effects on bulbing dynamics, nonstructural carbohydrate content, yield, and quality ofRosado Paraguayo'garlic bulbs. Hortscience, 41 (3): 589-592.
Atiyeh, R., Arancon, N., Edwards, C. and Metzger, J. 2000. Influence of earthworm-processed pig manure on the growth and yield of greenhouse tomatoes. Bioresource Technology, 75 (3): 175-180 .
Atiyeh, R., Lee, S., Edwards, C., Arancon, N. and Metzger, J. 2002. The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresource Technology, 84 (1): 7-14.
Ayyobi, H., Peyvast, G. A. and Olfati, J. A. 2013. Effect of vermicompost and vermicompost extract on oil yield and quality of peppermint (Mentha piperita L.). Jornal of Agriculture Science, 58 (1): 51-60.
Bachman, G. and Metzger, J. 2008. Growth of bedding plants in commercial potting substrate amended with vermicompost. Bioresource Technology, 99 (8): 3155-3161.
Baker, R. 1989. Improved Trichoderma spp. for promoting crop productivity. Trends in Biotechnology, 7 (2): 34-38.
Benítez, T., Rincón, A. M., Limón, M. C. and Codón, A. C. 2004. Mecanismos de biocontrol de cepas de Trichoderma. International Microbiology, 7 (4): 249-260.
Burits, M. and Bucar, F. 2000. Antioxidant activity of Nigella sativa essential oil. Phytotherapy Research, 14 (5): 323-328.
Chaves, F., Ming, L. C., Ehlert, P., Meireles, M. and Fernandes, D. 2001. Influence of Organic Fertilisation on Leaves and Essential Oil Production of Ocimum gratissimum L. Paper presented at the International Conference on Medicinal and Aromatic Plants. Possibilities and Limitations of Medicinal and Aromatic Plant, 576-579.
Claire , J. A. R. O. 2001. Effects of vermicompost applied in a high tunnel, International Microbiology, 7 (5): 03-486.
Cutler, H. G., Cox, R. H., Crumley, F. G. and Cole, P. D. 1986. 6-Pentyl-α-pyrone from Trichoderma harzianum: its plant growth inhibitory and antimicrobial properties. Agricultural and Biological Chemistry, 50 (11): 2943-2945.
DERE, Ş., GÜNEŞ, T. and Sivaci, R. 1998. Spectrophotometric determination of chlorophyll-A, B and total carotenoid contents of some algae species using different solvents. Turkish Journal of Botany, 22 (1): 13-18.
Edwards, C. A., Arancon, N. Q., Vasko-Bennett, M., Askar, A. and Keeney, G. 2010. Effect of aqueous extracts from vermicomposts on attacks by cucumber beetles (Acalymna vittatum)(Fabr.) on cucumbers and tobacco hornworm (Manduca sexta L.) on tomatoes. Pedobiologia, 53 (2): 141-148.
Harman, G. E. 2006. Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96 (2): 190-194.
Harman, G. E., Howell, C. R., Viterbo, A., Chet, I. and Lorito, M. 2004. Trichoderma species opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2 (1): 43.
Hoitink, H., Madden, L. and Dorrance, A. 2006. Systemic resistance induced by Trichoderma spp.: interactions between the host, the pathogen, the biocontrol agent, and soil organic matter quality. Phytopathology, 96 (2): 186-189.
Karmegam, N. and Daniel, T. 2000. Effect of biodigested slurry and vermicompost on the growth and yield of cowpea, Vigna unguiculata (L.) Walp. variety Cl. Environment and Ecology, 18 (2): 367-370.
Lazcano, C. and Domínguez, J. 2011. The use of vermicompost in sustainable agriculture: impact on plant growth and soil fertility. Soil Nutrients, 10: 1-23.
Marinari, S., Masciandaro, G., Ceccanti, B. and Grego, S. 2000. Influence of organic and mineral fertilisers on soil biological and physical properties. Bioresource Technology, 72 (1): 9-17.
Marschner, H. 1987. Mineral nutrition of higher plants. Journal of Plant Nutrition and Soil Science, 150 (5): 358-359.
Manual, A. K. A., Kumar, R. R. and Thomas, J. 2007. An overview of PGR trials in UPASI TRF. Planters Chronicle, 103: 12-16.
Mastouri, F., Björkman, T. and Harman, G. E. 2010. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology, 100 (11): 1213-1221.
Mcginnis, M., Cooke, A., Bilderback, T. and Lorscheider, M. 2003. Organic fertilizers for basil transplant production. Acta Horticulturea, 491: 213-218.
Moghadam, A. R. L., Ardebili, Z. O. and Saidi, F. 2012. Vermicompost induced changes in growth and development of Lilium asiatic hybrid var. Navona. African Journal of Agricultural Research, 7 (17): 2609-2621.
Muscolo, A., Bovalo, F., Gionfriddo, F. and Nardi, S. 1999. Earthworm humic matter produces auxin-like effects on Daucus carota cell growth and nitrate metabolism. Soil Biology and Biochemistry, 31 (9): 1303-1311.
Narender, P., Malik, T. P. and Mangal, J. L. 2002. Effect of FYM and vermicompost on tomato (Lycopersicon esculantum Mill VAR.SEL-7). XXVIth International Horticultural Congress. Toronto, Canada. Horticulture Art and Science for life.
Narkhede, S. D., Attarde, S. B. and Ingle, S. T. 2011. Study on the effect of chemical fertilizer and vermicompost on growth of chilli pepper plant (Capsicum annum). Journal of Applied Sciences in Environmental Sanitation, 6 (3): 327-332.
Ousley, M. A., Lynch, J. M. and Whipps, J. M. 1994. Potential of Trichoderma spp. as consistent plant growth stimulators. Biology and Fertility of Soils, 17 (2): 85-90.
Papavizas, G. and Lumsden, R. 1982. Improved medium for isolation of Trichoderma spp. from soil [Fungi]. Plant Diseases (USA), 12 (7): 187-189.
Pedra, F., Polo, A., Ribeiro, A. and Domingues, H. 2007. Effects of municipal solid waste compost and sewage sludge on mineralization of soil organic matter. Soil Biology and Biochemistry, 39 (6): 1375-1382.
Pourmorad, F., Hosseinimehr, S. J. and Shahabimajd, N. 2006. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. African Journal of Biotechnology, 5 (11): 1142-1145.
Samuels, G. J. 1996. Trichoderma: a review of biology and systematics of the genus, Mycological Research, 100 (8): 923-935.
Senesi, N., Saiz-Jiminez, C. and Miano, T. 1992. Spectroscopic characterization of metal-humic acid-like complexes of earthworm-composted organic wastes. Science of the total Environment, 117: 111-120.
Singh, R., Sharma, R., Kumar, S., Gupta, R. and Patil, R. 2008. Vermicompost substitution influences growth, physiological disorders, fruit yield and quality of strawberry (Fragaria x ananassa Duch.). Bioresource Technology, 99 (17): 8507-8511.
Singh, V., Singh, P., Yadav, R., Awasthi, S., Joshi, B., Singh, R. and Duttamajumder, S. 2010. Increasing the efficacy of Trichoderma harzianum for nutrient uptake and control of red rot in sugarcane. Journal of Horticulture and Forestry, 2 (4): 66-71.
Sousa, C., Pereira, D. M., Pereira, J. A., Bento, A., Rodrigues, M. A., DopicGarcıa, S., Valenta, O. P., Lopes, G., Ferreres Federico Seabra, R. M. and Andrade, P. B. 2008. Multivariate analysis of tronchuda cabbage (Brassica oleracea L. var. costata DC) phenolics:influence of fertilizers. Journal of Agriculture and Food Chemistry, 56 (2): 2231-2239.
Theunissen, J., Ndakidemi, P. and Laubscher, C. 2010. Potential of vermicompost produced from plant waste on the growth and nutrient status in vegetable production. International Journal of Physical Sciences, 5 (13): 1964-1973.
Upadhyaya, S., Mahanta, J. J. and Saikia, L. R. 2011. Antioxidant activity, phenol and flavonoid content of a medicinalherb Andrographis paniculata (Burm. F.) Nees grown using different organicmanures. Journal of .Pharmacy Research, 4 (3): 614-616.
Vinale, F., Ambrosio, G. D., Abadi, K., Scala, F., Marra, R., Turrà, D. and Lorito, M. 2004. Application of Trichoderma harzianum (T22) and Trichoderma atroviride (P1) as plant growth promoters, and their compatibility with copper oxychloride. Journal of Zhejiang University (Agriculture and Life Sciences), 30 (4): 425-425.
Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L. and Lorito, M. 2008. Trichoderma–plant-pathogen interactions. Soil Biology and Biochemistry, 40 (1): 1-10.
Yedidia, I., Srivastva, A. K., Kapulnik, Y. and Chet, I. 2001. Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant and soil, 235 (2): 235-242.
Yedidia, I., Benhamou, N. and Chet, I. 1999. Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Applied and Environmental Microbiology, 65 (3): 1061-1070.