تأثیر پرایمینگ با سطوح مختلف کیتوزان، روی برخی ویژگی‌های فیزیولوژیکی و بیوشیمیایی لوبیا چیتی (.Phaseolus vulgaris L) تحت تنش شوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی، اردبیل، ایران

2 استاد، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی، اردبیل، ایران

3 دانشیار، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

پرایمینگ، بذرها را پیش از قرار گرفتن در بستر خود و مواجهه با تنش شوری، از لحاظ فیزیولوژیکی و بیوشیمیایی آماده جوانه‌زنی می‌کند. به‌منظور بررسی تأثیر سطوح مختلف کیتوزان روی ویژگی‌های فیزیولوژیکی و بیوشیمیایی در لوبیا چیتی رقم صدری تحت تنش ‌شوری، آزمایشی به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی با چهار تکرار در دانشگاه محقق اردبیلی در سال 1400 انجام شد. تیمارها شامل چهار سطح شوری (صفر، 50، 100 و 150 میلی‌مولار) و چهار سطح کیتوزان (صفر، 25/0، 50/0 و 75/0 درصد وزنی- حجمی) بود. نتایج نشان داد که تنش شوری درصد جوانه‌زنی را کاهش و میانگین مدت جوانه‌زنی و وزن خشک باقی‌مانده بذر را افزایش داد. کیتوزان باعث کاهش تأثیر شوری و بهبود درصد جوانه‌زنی و درصد رطوبت گیاهچه گردید. با افزایش شوری میزان SRUR، SRUE و DUSR کاهش یافتند. بیش‌ترین و کم‌ترین SRUR، DUSR و SR به‌ترتیب از کاربرد سطوح شوری 50 و150 میلی‌مولار به‌دست آمد. میزان SRUR، SRUE و DUSR در پرایمینگ با کیتـوزان 75/0 نسبت به شاهد (پرایمینگ با آب مقطر) به‌ترتیب در حدود 4/10، 6/9 و 2/7 درصد بیش‌تر بود. میزان کاهش SRRE و SR نیز نسبت به تیمار شاهد بدون شوری به‌ترتیب 4/13 و 3/8 درصد بود. هم‌چنین، میزان پروتئین و فیتین در پیش‌تیمار با کیتوزان 75/0 درصد و شوری صفر میلی‌مولار نسبت به شاهد به‌ترتیب در حدود 30 و 47 درصد افزایش نشان داد‌. در کل، پیش‌تیمار بذر با غلظت‌های مناسب کیتوزان به‌ویژه کیتوزان 75/0 درصد به‌عنوان بهبود‌دهنده رشد و کاهنده اثرات نامطلوب شوری در گیاه لوبیا می‌تواند مطرح باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Priming with Different Levels of Chitosan on Physiological and Biochemical Traits in French Bean (Phaseolus vulgaris L.) Under Salinity Stress

نویسندگان [English]

  • Haniyeh Saadat 1
  • Mohammad Sedghi 2
  • Raouf Seyed Sharifi 2
  • Salim Farzaneh 3
1 PhD Student, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabil, Ardabil, Iran
2 Professor, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabil, Ardabil, Iran
3 Associate Professor, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabil, Ardabil, Iran
چکیده [English]

Priming prepares the seeds physiologically and biochemically for germination before being placed in their bed and exposed to the salinity stress. In order to investigate the effect of different levels of chitosan on physiological and biochemical traits in French bean (Phaseolus vulgaris L. CV. Sadri) under salinity stress, a factorial experiment was conducted based on a completely randomized design with four replications at the University of Mohaghegh Ardabili in 2021. Factors included four salinity levels (0, 50, 100 and 150 mM) and four chitosan levels (0, 0.25, 0.50 and 0.75% by weight-volume). The results showed that salinity stress decreased germination percentage (GP) and increased mean germination time (MGT) and residual dry weight (RDW). Chitosan reduced the effect of salinity and improved GP and Seedling Moisture Percentage (SMP). With increasing salinity, seed reserves utilization rate (SRUR), seed reserve utilization efficiency (SRUE) and deduction of used seed reserves (DUSR) decreased. The highest and the lowest of SRUR, DUSR and SR were obtained from the application of salinity levels of 50 and 150 Mm, respectively. The amount of SRUR, SRUE and DUSR in 0.75 chitosan priming was higher about 10.4, 9.6 and 7.2%, respectively, compared to the control treatment (priming with distilled water). SRUE and SR reduction was about 13.4 and 8.3%, respectively compared to the control without salinity. Also, the amount of Protein and Phytin in pretreatment with 0.75% chitosan and 0 mM salinity showed an increase about 30% and 47% compared to the control, respectively. In general, seed pretreatment with appropriate concentrations of chitosan especially 0.75% chitosan improves growth and reduces the adverse effects of salinity on the bean plant.

کلیدواژه‌ها [English]

  • Protein
  • Seed reserves remobilization
  • Seedling Tissue Water Percentage
  • Phytin
  • Sodium Chloride
امیدی، ح.، جعفرزاده، ل. و نقدی بادی، ح. 1394. بذر گیاهان دارویی و زراعی. جلد 1، انتشارات دانشگاه شاهد، تهران، 460 صفحه.
دولت آبادیان، آ.، محمد مدرس ثانوی، س. ع. و اعتمادی، ف. 1387. اثر چیش تیماری اسید سالیسیلیک بر جوانه‌رنی بدر گندم در شرایط تنش شوری. مجله زیست‌شناسی ایران، 4: 702-692.
سلطانی، ا.، کامکار، ب.، گالشی، س. و اکرم قادری، ف. 1387. اثر فرسودگی بذر بر تخلیه ذخایر بذر و رشد هتروترفیک گیاهچه گندم. مجله علوم کشاورزی و منابع طبیعی، 1: 196-193.
شاکرمی، ب.، دیانتی‌تیلکی، ق.، طبری کوچک‌سرایی. و بهتری، ب. 1389. اثر تیمارهای پرایمینگ بر مقاومت به شوری بذور Festuca arundinacea Scherab و .Festuca ovina L در مرحله جوانه‌زنی و رشد اولیه. تحقیقات ژنتیک و اصلاح گیاهان مرتعی و جنگلی ایران، 18(2): 328-318.
شکاری، ف.، پاک‌مهر، آ.، راستگو، م.، وظایفی، م. و قریشی نسب، م. ج. 1389. اثر پرایمینگ بذر با اسید سالیسیلیک بر پاره‌ای صفات فیزیولوژیک لوبیا چشم بلبلی (Vigna unguiculata L.) تحت تنش کم آبی در زمان غلاف‌بندی. اکوفیزیولوژی گیاهان زراعی، 13: 29-13.
عطاردی، ه.، ایران نژاد، ح.، شیرانی راد، ا. ح.، امیری، ر. و اکبری، غ. 1390. بررسی اثرات اعمال تنش خشکی و تاریخ کاشت روی گیاه مادری، بر بنیه و ظهور گیاهچه بذرهای تولیدی برخی ارقام کلزا. مجله علوم گیاهان زراعی ایران ، 42(1):80-71.
علی‌زاده، ا. 1383. رابطه آب، خاک و گیاه. جلد 1، انتشارات آستان قدس رضوی، مشهد.
قنبری،م. و کرم نیا، س. 1395. ارزیابی تأثیر پیری بذر بر برخی خصوصیات جوانه‌زنی لوبیا (Phaseolus vulgaris L) توده بومی استان گیلان تحت شرایط تنش شوری. ششمین همایش ملی حبوبات ایران، خرم آباد، ایران.
عیسوند، ح. ر. و مداح عارفی، ح. 1386. بررسی اثر برخی تنظیم کننده‌های رشد گیاهی بر کیفیت فیزیولوژیک بذرهای پیر شده گیاه.Bromus inermis  تحقیقات ژنتیک و اصلاح گیاهان مرتعی و جنگلی ایران. 15(2): 171-159.
مجنون حسینی، ن. 1393. زراعت و تولید حبوبات. جلد 1، انتشارات جهاد دانشگاهی تهران، تهران، 284 صفحه.
منصوری گندمانی.، امیدی، ح. و رضایی چرمهینی، م. 1395. بررسی کاربرد کیتوزان بر جوانه‌زنی سویا (Glycine max L.) در شرایط تنش شوری. مجله پژوهش بذر ایران، 3: 177-173.
مهدوی، ب.، مدرس ثانوی، س. م.، آقا علیخانی، م. و شریفی، م. 1392. اثر غلظت‌های مختلف کیتوزان بر جوانه‌زنی بذر و آنزیم‌های آنتی‌اکسیدانت گلرنگ (Carthamus tinctorius L.) در شرایط تنش کم آبی. مجله پژوهش‌های گیاهی (زیست شناسی ایران)، 26: 365-352.
Agrawal, G. K., Rakwal, R., Tamogami, S., Yonekura, M., Kubo, A. and Saji, H. 2002. Chitosan activates defense/stress response(s) in the leaves of Oryza sativa seedlings. Plant Physiology and Biochemistry, 40: 1061-1069.
Ahmad, R. and Jabeen, N. 2009. Demonstration of growth improvement in sunflower (HellanthusAnnuusL.) by the use of organic fertilizers under saline conditions. Pakistan Journal of Botany, 41(3): 1373-1384.
Al-Ansari, F. M. 2003. Salinity tolerance during germination of two arid land varieties of wheat. Seed Science and Technology, 31: 597-603.
Al-Ashkar, A., Alderfasi, S., El-Hendawy, N., Al-Suhaibani, S. and El-Kafafi, M. F. 2019. Seleiman Detecting Salt Tolerance in Doubled Haploid Wheat Lines. Agronomy, 9(4): 211.
Ashraf, M. and Foolad, M. R. 2005. pre – sowing seed treatment – Ashotgun approach to Improve germination, growth and crop yield under saline and none – saline conditions. Advances in Agronomy, 88: 223-265.
Ashraf, M., Athar, H. R., Harris, P. J. C., Kwon, T. R. 2008. Some prospective strategiesfor improving crop salt tolerance. Advances in Agronomy, 97: 45-110.
Basra, S. M. A., Zia, M. N., Mehmood, T., Afzal, I. and Khaliq, A. 2002. Comparison of different invigoration techniques in wheat (Tiriticum aestivum L.) seeds. Pakistan Journal of Arid Agriculture, 5: 325-329.
Bittencourt, M. L. C., Dias, D. C., Dias, L. A. and Araújo, E. F. 2005. Germination and vigour of primed Asparagus seeds. Scientia Agricola, 62(4):319-324.
Bradford, M. M. 1976. Arapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein day binding. Analitical Bioch, 72: 248-254.
Cicek, N. and Cakirlar, H. 2002. The effect of salinity on some physiological parameters in two maize cultivars. Bulgarian Journal of Plant Physiology, 28: 66-74.
Copeland, L. O. and McDonald, M. B. 2002. Principles of Seed Science and Technology. Annals of Botany, 89(6): 1-467.
Crini, G. 2019. Historical review on chitin and chitosan biopolymers. Environmental Chemistry Letters, 17: 1623-1643.
Dzung, N. A. 2005.  Application of chitin, chitosan and their derivatives for agriculture in Vietnam. Journal of Chitin and Chitosan Science, 10: 109–113.
Dzung, N. A., Thang, N. T. 2004. Effect of oligoglucosamine on the growth and development of peanut (Arachis hypogea L.), In: Khor, E., Hutmacher, d. and Yong, l. l. eds. Chitosan Symposium Singapore, AsiaPacific on Chitin.
El-Tantawy, E. M. 2009. Behavior of tomato plants as affected by spraying with chitosan and aminofort as natural stimulator substances under application of soil organic amendments. Pakistan Journal of Biological Science, 12: 1164-1173.
Emami Bistgani, Z., Siadat, S. A., Bakhshandeh, A., Ghasemi Pirbalouti, A. and Hashemi, M. 2017. Interactive effects of drought stress and chitosan application on physiological characteristics and essential oil yield of Thymus daenensis Celak. The Crop Journal, 5: 407-415.
Ghanbari, M., Mokhtassi-Bidgoli, A., Talebi-Siah Saran, P. and Pirani. H. 2019. Effect of deterioration on germination and enzymes activity in dry bean (Phaseolus vulgaris L.) under salinity stress condition. Environmental Stresses in Crop Sciences, 12: 585-594.
Isayenkov, S. 2012. Physiological and molecular aspects of salt stress in plants. Cytology and Genetics, 46: 302-318. 
Jisha, K. C. and Puthur, J. T. 2016. Seed priming with beta-amino butyric acid improves abiotic stress. Tolerance Rice Seedlings. Rice Science, 23(5): 242–254.
Jisha, K. C., Vijayakumari, K. and Puthur J. T. 2013, Seed priming for abiotic stress tolerance: an overview. Acta Physiology Plantarum, 35(5): 1381–1396.
Kaur, S., Gupta, A. K. and Kaur, N. 2005. Seed priming increase crop yield possibly by modulating enzymes of sucrose metabolism in chickpea. Journal of Agronomy and Crop Science, 191: 81-87.
Khan, W. M., Prithiviraj, B. and Smiyh, D. L. 2002. Effect of foliar application of chitin oligosaccharides on photosynthesis of maize and soybean. Photosynthetica, 40: 621-624.
Landi, S., Capasso, G., Ben Azaiez, F. E and Jallouli S. 2019. Different roles of heat shock proteins (70kDa) during abiotic stresses in barley (Hordeum vulgare) genotypes. Plants, 8(8): 248-267.
Latta, M. and Eskin, M. 1980. A simple method for phytate determination. Journal of Agricultural and Food Chemistry, 28: 1313-1315.
Limpanavech, P., Chaiyasuta, S., Vongpromek, R., Pichyangkura, R., Khunwasi, C., Chadchanwan, S., Lotrakul, P., Bunjongrat, R., Chaidee, A. and Bangyeekhun, T .2008. Effect of chitosan on floral production, gene expression and anatomical changes in the Dendrobium orchid. Scientia Horticulturae (Hort Science), 116: 65–72.
Mahdavi, B. and Rahimi, A. 2013. Seed priming with chitosan improves the germination and growth performance of ajowan {Carum copticum) under salt stress. EurAsian Journal of BioSciences, 7: 69–76.
Manchanda, G. and Garg, N. 2008. Salinity and Its Effects on the Functional Biology of Legumes. Acta Physiologiae Plantarum, 30: 595-618.
Mazor, L., Perl, M. and Negbi, M. 1984. Changes in some ATP dependent activities in seeds during treatment with polyethylene glycol and during the redlying process. Journal of Experimental Botany, 35: 1119-1127.
Meloni, D. A., Oliva, M. A., Martinez, C. A. and Cambraia, J. 2003. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany, 49: 69-76.
Mickelbart, M. V., Hasegawa, P. M., Bailey-Serres, J. 2015. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nature Reviews Genetics, 16: 237–251.
Munns, R., James, R. A. and Läuchli, A. 2006. Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57: 1025-1043.
Murphy, D. J., Hernandez-Pinzon, I. and Patel, K. 2001. Role of lipid bodies and lipid-body proteins in seeds and other tissues. Journal of Plant Physiology, 158(4): 471-478.
Muthukumarasamy, M., Gupta, S. D. and Panneerselvam, R. 2000. Influence of Triadimefon on the metabolism of NaCl stressed radish. Biologia Plantarum, 43(1): 67-72
Paparella, S., Araújo, S. S., Rossi, G., Wijayasinghe, M., Carbonera, D. and Balestrazzi, A. 2015, Seed priming: state of the art and new perspectives. Plant Cell Reports, 34: 1281–1293.
Parida, A. K. and Das, A. B. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and environmental safety, 60(3): 324-349.
Ruixin, L., Jinxia, H., Hongguo, X., Wenxia, W., Santosh, K. B., Yeqing, S., Jianen, H. and Heng, Y. 2019. Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (Triticum aestivum L.). International Journal of Biological Macromolecules, 1: 126:91-100.
Satvir-Kaur, A. K., Narinder-Kaur, G. and Kaur, S. 2000. Gibberline A3 reverses the effect of salt stress in chickpea (Cicer arietinum L.) seedlings by enhancing amylase activity and mobilization of starch in cotyldons. Plant Growth Regulation, 26(2):85-97.
Sedghi, M., Nemati, A., Amanpour-Balaneji, B. and Gholipouri, A. 2010. Influence of different priminig materials on germination and seedling establishment of Milk Thistle (Silybum marianum) under salinity stress. World Applied Sciences Journal, 11(5): 604-609.
Soltani, A., Gholipoor, M., and Zeinali, E. 2006. . Seed reserve utilization and seedling growth of wheat as affected by drought and salinity. Environmental and Experimental Botany. 55: 195- 200.
Sharif, R., Mujtaba, M., Ur Rahman, M., Shalmani, A., Ahmad, H., Anwar, T., Tianchan, D. and Wang, X. 2018. The multifunctional role of chitosan in horticultural crops; A review. Molecules, 23: 872.
Shukla, N., Kuntal, H., Shanker, A. and Sharma, S. 2018. Hydro-priming methods for initiation of metabolic process and synchronization of germination in mung bean (Vigna radiata L.) seeds. Journal of Crop Science and Biotechnology, 21(2): 137–146.
Srinivasan, K., Saxena, S. and Singh, B. B. 1999. Osmo- and hydropriming of mustard seeds to improve vigour and some biochemical activities. Seed Science and Technology, 27(2): 785-789.
Timothy, P. 2001. Glutathion-related enzymes and selenium status: implications for oxidative stress. Biochemical Pharmacology, 62: 237-281.
Tsonev, T. D., Lazova, G. N., Stoinova, Z. G. and Popova, L. P. 1998. A possible rolefor jasmonic acid in adaptation of barley seedling to salinity stress. Journal of Plant Growth Regulation, 17(3):153-159.
Wang, Y.J., Wang, M.Y. and Huang, R. R. 2012. Effect of chitosan coating on seed germination and salt-tolerance of Brassica napus L. Bulletin of Botanical Research, 32(6): 689-694.
Yazdanpanah, S., Baghizadeh, A. and Abbassi, F. 2011. The interaction between drought stress and salicylic and ascorbic acids on some biochemical characteristics of Satureja hortensis. African Journal of Agricultural Research, 6: 798-807.
Zhang, M., Wang, Z., Yuan, L., Yin, C., Cheng, J., Wang, L., Huang, J. and Zhang, H. 2012. Osmopriming improves tomato seed vigor under aging and salinity stress. African Journal of Biotechnology, 11: 6305–6311.
Zhao, L., Shi, L., Zhang, Zh., Chen, J., Yang, J. and Tang. Z. H. 2011. Preparation and application of chitosan nanoparticles and nanofibers, Brazilian Journal of Chemical Engineering pp. 353-362.