بررسی سازگاری و پایداری عملکرد لاین‌های خالص سویا (.Glycine max L) از طریق GGE بای‌پلات

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار پژوهش، بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد، ایران

2 استادیار پژوهش، بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات کشاورزی و منابع طبیعی اردبیل (پارس آباد مغان)، سازمان تحقیقات، آموزش و ترویج کشاورزی، پارس‌آباد مغان، ایران

3 استادیار پژوهش، بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، شیراز، ایران

4 مربی پژوهش، بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات کشاورزی و منابع طبیعی گلستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، گرگان، ایران

5 کارشناس، مرکز تحقیقات کشاورزی و منابع طبیعی چهار محال و بختیاری، سازمان تحقیقات، آموزش و ترویج کشاورزی، شهرکرد، ایران

چکیده

گزینش ژنوتیپ‌هائی با عملکرد و پایداری بالا هدف اصلی اغلب برنامه‌های اصلاحی سویا است. این تحقیق با هدف بررسی سازگاری و پایداری عملکرد 16 ژنوتیپ سویا شامل 13 لاین خالص و سه رقم لینفورد، کلین و صبا در پنج منطقه کرج، گرگان، مغان، زرقان و شهرکرد و دو سال (1391-1390 و 1392-1391) در قالب طرح بلوک‌های کامل تصادفی با چهار تکرار انجام شد. جهت تعیین سازگاری و پایداری عملکرد از تجزیه GGE بای‌پلات استفاده شد. در تجزیه واریانس مرکب اثرات "ژنوتیپ"، "ژنوتیپ × مکان"، "ژنوتیپ × مکان × سال" در سطح احتمال 1 درصد بودند ولی اثر "ژنوتیپ × سال" غیرمعنی‌دار بود. دو مؤلفه PC1 و  PC2در مجموع 9/52 درصد از واریانس اثرات ژنوتیپ و ژنوتیپ × محیط  (G + GE)را توجیه نمودند. روشGGE  بای‌پلات نشان داد که لاین (Williams8× Delsoy4210) L68 با عملکرد 2844 کیلوگرم در هکتار بهترین ژنوتیپ‌ از نظر عملکرد و پایداری بود. در این بررسی سه محیط کلان شناسایی شد که اولین محیط کلان شامل محیط‌های کرج 1390، گرگان 1390، گرگان 1391، زرقان 1391 و مغان 1391 بود. دومین محیط کلان شامل محیط‌های کرج 1391، زرقان 1390 و مغان 1390 و سومین محیط کلان شامل شهرکرد 1390 و شهرکرد 1391 بود. هم‌چنین محیط کرج 1391 به‌عنوان مطلوب‌ترین محیط از جهت توانایی تمایزدهندگی ژنوتیپ برتر و نمایندگی محیط هدف بود. از آنجا که دو محیط گرگان 1390 و گرگان 1391 در محیط کلان اول و دو محیط شهرکرد 1390 و شهرکرد 1391 در یک محیط کلان (سوم) قرار گرفتند، می‌توان برای کاهش هزینه به انجام یک‌ سال آزمایش در این مناطق اکتفا نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Study of Compatibility and Yield Stability of Soybean (Glycine max L.) Purelines by GGE Biplot

نویسندگان [English]

  • Hamid Reza Babaei 1
  • Nasrin Razmi 2
  • Hamid Reza Khademhamzeh 3
  • Ebrahim Hezajaribi 4
  • Mojtaba Hashmijazi 5
1 Research Associate Professor of Horticulture Crops Research Department, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad, Iran
2 Research Assistant Professor of Horticulture Crops Research Department of Center of Agricultural Research and Natural Resources Ardabil Province (Parsabad Moghan), AREEO, Parsabad Moghan, Iran
3 Research Assistant Professor of Horticulture Crops Research Department, Fars Agricultural and Natural Resources Research and Education Center, AREEO,Shiraz, Iran
4 Research tutor of Horticulture Crops Research Department of Center of Agricultural Research and Natural Resources Golestan Province (Gorgan), AREEO, Gorgan, Iran
5 Research Expert of Center of Agricultural Research and Natural Resources Chaharmehal and Bakhtiyari Province. AREEO. Sharekord Iran
چکیده [English]

Selection of desirable genotypes with high yield and stability is the main goal of most soybean breeding programs. This study was conducted to study the adaptability and stability of seed yield of 16 soybean genotypes including: 13 pure lines and three varieties Linford, Clean and Saba. The assay was accomplished Based on a RCBD design with four replications in five regions: Karaj, Gorgan, Mughan, Zarghan (Fares) and Shahrekord and two years (2011–2012 and 2012-2013).  GGE biplot analysis was used to determine adaptability and yield stability. In combined variance analysis, the effects of “genotype”, “genotype × location”, “genotype × location × year” were significan at the 1% probability level, but the effect of “genotype × year” was not significant. The two components PC1 and PC2 explained a total of 52.9% of the variance of genotype and genotype × environment (G + GE) effects. Biplot GGE method showed that L68 (Delsoy4210 x Williams82) with a yield of 2844 kg/ha was the most favorable genotype in terms of yield and stability. In this study, three maga environments were identified, the first maga environment included the environments: Karaj 2012, Gorgan 2012, Gorgan 2012, Zarghan 2013 and Mughan 2013, The second maga environment included the environments Karaj 2013, Zarghan 2012 and Mughan 2012. The third maga environment included Shahrekord 2012 and Shahrekord 2013. Also Karaj 2013 was the most desirable environment according to the discriminating ability and representativeness of the goal environment. Since Gorgan 2012 and Gorgan 2013 were placed in the first maga environment and Shahrekord 2012 and Shahrekord 2013 were placed in an maga environment (the third), To reduce the cost, it is enough to conduct a one-year test in these areas.

کلیدواژه‌ها [English]

  • The interaction of genotype × environment
  • Ideal genotype
  • Ideal environment
  • Mega environment
دادرس، ا.، سمیع‌زاده، ح. و صبوری، ح. 1396. ارزیابی عملکرد ارقام و لاین‌های پیشرفته سویا تحت تنش خشکی با استفاده از تجزیه GGE بای‌پلات. پژوهش‌نامه اصلاح گیاهان زراعی، 23: 26-18.
سلطان‌محمدی، س.، پیغمبری، س. ع. و بابائی، ح. ر. 1396. بررسی سازگاری و پایداری عملکرد رقم‌ها و رگه‌های سویا در چهار منطقه. علوم گیاهان زراعی ایران، 48 (2): 397-389.
Atnaf, M., Kidane, S., Abadi, S. and Fisha, Z. 2013. GGE biplots to analyse soybean multi-environment yield trial data in north Western Ethiopia. Journal of Plant Breeding and Crop Science, 5: 245-254.
Basford, K., E. and Cooper, M. 1998. Genotype by environment interactions and some considerations of their implication for wheat breeding in Australia. Australian Journal of Agricultural Research, 49: 154-175.
Bhartiya, A., Aditya, J. P., Pushpendra, K. S., Purwar, J. P. and Agarwal, A. 2017. AMMI & GGE biplot analysis of multi environment yield trial of soybean in North Western Himalayan state Uttarakhand of India. Legume Research Journal, 40 (2): 306-312.
Carvalho, M. P., Nunes, J. A. R., Carmo, E. L., Simon, G. A. and Moraes, R. N. O. 2021. Adaptability and stability of conventional soybean by GGE biplot analysis. Retrieved Aug. 16, 2021 https://doi.org/10.1590/1983-40632021v5167995.
Chaudhary, K. J. and Wu, J. 2012. Stability analysis for yeild and seed quality of soybean (Glycine max) across different environment in eastern South Dakota. Annual Conference on Applied Statistics in Agriculture, Retrieved Aug. 4, 2017, from http://newprairiepress.org/agstatconference/2012/proceedings/11.
Eberhart, S. A. and Russel, W. A. 1966. Stability parameters for comparing varieties. Crop Science, 6: 36-40.
Edugbo, R. E., Nwofia, G. E. and Fayeun, L. S. 2015. An assessment of soybean (Glycine max, L. Merrill) grain yield in different environments using AMMI and GGE biplot models in Humidorest Fringes of southeast Nigeria. Agricultura Tropical et Subtropical, 48 (3): 82-90.
Finlay, K. W. and Wilkinson, G. N. 1963. The analysis of adaptation in a plant breeding program. Australian Journal of Agricultural Research, 14: 742-754.
Eskridge, K. M. 1996. Analysis of Multi Environment Trial Using The Probability of Outperforming a Check. In: M. S. Kang and Guach, Jr., (ed), Genotype by Environment Interaction, pp. 273-307. CRC Press.
Gurmu, F., Mohammed, H. and Alemaw, G. 2009. Genotype x Environment interactions and stability of soybean for grain yield and nutrition quality. African Crop Science Journal, 17: 87-99.
Kang, M. S. 1993.Simultaneous selection for yield and stability in crop performance trials. Consequences for growers. Agronomy Journal, 85: 754-757.
Kocaturk, M., Cubukcu, P., Goksoy, A. T., Sincik, M., Ilker, E., Kadiroglu, A., Vurarak, Y., Sahin, Y., Karakus, M. and Yildirim, U. A. 2019. GGE biplot analysis of genotype X environment interaction in soybean grown as second crop. Turkish Jounal Field Crops, 24 (2): 145-154.
Pacheco, R. M., Duarte, J. B., Souza, P. I. M., Silva, S. A. and Nunes, J. 2009. Key locations for soybean genotype assessment in Central Brazil. Pesquisa Agropecuaria Brasileia, 44 (5): 478-486.
Payne, R.W., Harding, S. A., Murray, D. A. and Soutar, D. M. 2009. Gen Stat Release 12. Published by VSN International, 5 The Waterhouse, Waterhouse Street, Hemel Hempstead, Hertfordshire HP1 1ES, UK.
Roshandel, M., Pourmohammad, A. R., Babaei, H. R. and Shekari, F. 2016. Grain yield stability analysis of soybean genotypes by AMMI method. Azarian Journal of Agriculture, 6 (3): 119-128.
Silva, W. J. S., Neto, F. A. N., Al-Qahtani, W. H., Okla, M. K. and AbdElgawad, H. 2022. Yield of soybean genotypes identified through GGE biplot and path analysis. Retrieved Oct. 12, 2022, from https://doi.org/10.1371/journal.pone.0274726.
Silveira, D. A., Pricinotto, L. F., Nardino, M., Bahry, C. A., Cavenaghi Prete, C. E. and Cruz, L. 2016. Determination of the adaptability and stability of soybean cultivars in different locations and at different sowing times in Parana state using the AMMI and Eberhart and Russel methods. Retrieved Aug. 3, 2019, from https://www.researchgate.net/ publication/311849977.
Sousa, L. B., Hamawaki, O. T., Nogueira, A. P. O., Batista, R. O., Oliveira, V. M. and Hamawaki, R. L. 2015. Evaluation of soybean lines and environmental stratification using the AMMI, GGE biplot, and factor analysis methods. Genetics and Molecular Research, 14 (4): 12660-12674.
Yan, W. 1999. The interconnectedness among the traits of wheat and its implication in breeding for higher yield, Cereal Crops, 1: 43-45.
Yan, W. and Rajcan, I. 2002. Biplot analysis of sites and trait relations of soybean in Ontario. Crop Science, 42: 11-20.
Yan, W. and Kang, M. S. 2003. GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists and agronomists. CRC Press.
Yang, R., Crossa, J., Cornelius, P. L. and Burgueno. J. 2009. Biplot analysis of GEI effect. Crop Science, 49: 1564-1576.
Yates, F. and Cochran, W. G. 1956. The analysis of experiments. Journal of Agronomic Science, 14: 742-754.
Zhang, M., Kang, M. S., Reese Jr P. F. and Bhardwaj. H. L. 2006. Soybean cultivar evaluation via GGE biplot analysis. Journal of New Seeds, 7 (4): 37-50.