تأثیر شوری بر خصوصیات فتوسنتزی و غلظت عناصر برگ توده‌های مختلف خربزه (.Cucumis melo L)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد، گروه باغبانی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ایران

2 دانشیار، گروه باغبانی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ایران

3 استادیار، بخش تحقیقات گروه زراعی و باغی، مرکز تحقیقات کشاورزی و منابع طبیعی اصفهان، اصفهان، ایران

چکیده

به‌منظور بررسی تأثیر شوری آب آبیاری بر صفات فتوسنتزی و غلظت عناصر برگ توده‌های مختلف خربزه، آزمایشی در قالب کرت‌های خرد شده بر پایه طرح بلوک‌های کامل تصادفی با سه تکرار روی توده‌های متحمل (سوسکی و دیاموند) و توده‌های حساس به شوری (درگزی و زرد ایوانکی) در دو سطح شوری کلریدسدیم 3/2 و 8 دسی‌زیمنس بر متر به اجرا درآمد. نتایج نشان داد با افزایش شوری شاخص کلروفیل در کلیه توده‌های حساس و متحمل کاهش یافت. فتوسنتز در توده‌های زرد ایوانکی و دیاموند به‌ترتیب بیش‌ترین (62 درصد) و کم‌ترین (19 درصد) کاهش را نشان دادند. هدایت روزنه‌ای در توده زرد ایوانکی کم‌ترین میزان (05/0) و توده دیاموند بیش‌ترین (39/0) را نشان داد. دی‌اکسیدکربن درون روزنه در توده‌های زرد ایوانکی، سوسکی و دیاموند به‌ترتیب 44، 26 و 11 درصد کاهش یافت. میزان سدیم برگ در توده‌های درگزی و زرد ایوانکی نسبت به شاهد به‌ترتیب 46 و 48 درصد افزایش یافت و میزان کلر برگ در همین توده‌ها به‌ترتیب 56 و 70 درصد افزایش نشان داد. بیش‌ترین کاهش نسبت پتاسیم به سدیم در توده درگزی و به میزان 71 درصد مشاهده شد. میزان فسفر برگ در کلیه توده‌ها به‌جز توده درگزی کاهش یافت. به‌طورکلی نتایج نشان داد که با اعمال تنش شوری پارامترهای فتوسنتزی و عناصر پتاسیم و فسفر کاهش و سدیم و کلر افزایش یافتتند. توده مقاوم دیاموند از طریق مکانیسم تدافعی تحمل بالاتری نسبت به شوری در مقایسه به توده حساس زرد ایوانکی داشته و تحت شرایط شوری می‌توان از آن به‌عنوان یک رقم متحمل استفاده کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Salinity on Photosynthetic Properties and Concentration of Leaf Elements of Different Accession of Melons (Cucumis melo L.)

نویسندگان [English]

  • Hajar Shafie 1
  • Maryam Haghighi 2
  • Ali Farhadi 3
1 Former MSc Student, Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
2 Associate Professor, Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
3 Assistant Professor, Department of Research, Agricultural and horticultural group of Isfahan Research Center of Agriculture and Natural Resources, Isfahan, Iran
چکیده [English]

To study the effect of irrigation water salinity on physiological characteristics and the concentration of leaf elements of different accession of melons a split-plot experiment was designed based on RCBD with 3 replicates on two accessions, tolerant (Sooski and Diamond) and two accessions sensitive (Daregazi and Zard Ivanaki) and two salinity levels (tap water 2.3 ds/m (control) and 8 ds/m) according to the salinity of wells) in the field of Isfahan research station in 2016-2017. The results showed that with increasing salinity, the chlorophyll index decreased in all sensitive and tolerant accessions 21 and 16% respectivly. Photosynthesis and stomatal conductance showed the highest and lowest reduction in the Zard Ivanaki and Diamond accessions,62 and 19% respectively in comparison to the control. Stomata conductance was lowest in Zard Ivanaki (0.05) and highest in Diamond (0.39). CO2 substomatal was reduced by 44%, 26%, and 11%, respectively, in the Zard Ivanaki, Sooski and Diamond accessions. Photosynthetic water use efficiency did not have a significant effect with increasing salinity in all accessions. The amount of Na and Cl increased in the Daregazi and Zard Ivanaki accessions compared to the control, and K  showed the lowest decrease by 26% in the Diamond accession. The highest reduction K/Na ratio was observed in Daregazi by 71%. The amount of P decreased in all of the accessions, except for the Daregazi, Overall, the results showed that by applying salt stress, photosynthetic parameters, K and P elements decreased, and Na and Cl increased, and this decrease was lowest in Diamonds and highest in Zard Ivanaki. Diamond resistant mass has a higher tolerance to salinity compared to sensitive cultivar through defense mechanism by restricting the uptake or transfer of sodium to aerial parts and also maintaining a good level of potassium and can be used as a tolerant cultivar under salinity conditions.

کلیدواژه‌ها [English]

  • Chlorophyll
  • Potassium
  • Sodium
  • Stomata conduction
  • Tolerance
آمارنامه کشاورزی. 1394. اداره کل آمار و اطلاعات سازمان کشاورزی استان اصفهان، 122ص
احمدی، ع. و بیکر، د. آ. 1379. عوامل روزنه‌ای و غیرروزنه‌ای محدودکننده‌ی فتوسنتز در گندم در شرایط تنش خشکی. مجله علوم کشاورزی ایران، 31: 813-825.
باغانی، ج.، علیزاده، ا.، انصاری، ح.، عزیزی، م. و صدرقائین، ح. 1392. تأثیر آبیاری با آب‌شور بر ویژگی‌های فنولوژیکی خربزه. نشریه آبیاری و زهکشی ایران، 2: 222-230.
شفیعی، ه.، حقیقی، م. و فرهادی، ع. 1398. ارزیابی تحمل به شوری ارقام بومی خربزه ایرانی. نشریه تولید و فرآوری محصولات زراعی و باغی، 1: 51- 63.
صالحی، م.، کوچکی، ع. و نصیری محلاتی، م. 1383. میزان نیتروژن و کلروفیل برگ به‌عنوان شاخصی از تنش شوری در گندم. پژوهش‌های زراعی ایران، 2: 25-33.
طباطبایی، س. ج. 1388. اصول تغذیه معدنی گیاهان. چاپ اول. نشر خوارزمی. فصل تجزیه مواد. 562 صفحه.
کافی، م.، زند، ا.، کامکار، ب.، شریفی، ح. ر. و گلدانی، م. 1380. فیزیولوژی گیاهی (ترجمه). انتشارات جهاد دانشگاهی مشهد. 456 صفحه.
کوچکی، ع. و سلطانی، ا. 1377. اصول و عملیات کشاورزی در مناطق خشک. نشر آموزش کشاورزی. 984 صفحه.
محمدزاده، ا. 1390. اثر شوری آب آبیاری و کمیت ژنوتیپ‌های تجاری خربزه. مقالات نخستین همایش ملی تولید و فرآوری خربزه.
ملکوتی، م. و عیبی، م. 1376. تعیین حد بحرانی عناصر غذایی محصولات استراتژیک و توصیه صحیح کودی کشور. چاپ اول، انتشارات نشر آموزش کشاورزی. سازمان تات، کرج، ایران. 64 صفحه.
همایی، م. 1381. واکنش گیاهان به شوری. انتشارات کمیته ملی آبیاری و زهکشی ایران. 107 صفحه.
Ashraf, M. P. J. C. and Harris, P. J. C. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166: 3-16.
Awad, A. S., Edwards, D. G. and Campbell, L. C. 1990. Phosphorus enhancement of salt tolerance of tomato. Crop Science, 30: 123-128.
Bohra, J. S. and Doerffling, K.1993. Potassium nutrition of rice (Oryza sativa L.) varieties under NaCl salinity. Plant and Soil, 152: 299-303.
Botia, P., Navarro, J. M., Cerda, A. and Martinez, V. 2005. Yield and fruit quality of two melon cultivars irrigated with saline water at different stages of development. European Journal of Agronomy, 23: 243-253.
Dasgan, H. Y., Kusvuran, S., Aydoner, G., Akyol, M., Bol, A. and Abak, A. 2012. Screening for salinity and drought tolerance in melons. Proceedings of the Xth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae, Antalya, Turkey, 15-18 October, 2012 2012 pp.497-502.
Franco, J. A., Esteban, C. and Rodriguez, C. 1993. Effects of salinity on various growth stages of muskmelon cv. Revigal. Journal of Horticultural Science, 68: 899-904.
Geissler, N., Hussin, S. and Koyro, H. W. 2010. Elevate concentration enhances salinity tolerance atmospheric CO2 in Aster tripolium L. Planta, 231: 583-594.
Hamada, A. M. and EL-enany, A. E. 1994. Effect of NaCl salinity on growth, pigment and mineral element contents, and gas exchange of broad bean and pea plants. Biologia Plantarum, 36: 75-81.
Hortimed.2001, Salt response of protected horticultural crops. Hortimed. March 2001.
Javanmardi, J., Lesani, H. and Kashi, A. 2001. Effect of NaCl salinity on the uptake and transport of melons in five varieties of Iran native. Iranian Journal of Agricultural Sciences, 3 (1): 31-40.
Kafi, M. and Khan, M. A. 2008. Crop and Forage Production using Saline Waters. Daya Publishers. New Delhi. India. pp. 289.
Kao, W. Y., Tsai, T. T. and Shih, C. N. 2007. Gas exchange and chlorophyll fluorescence parameters of 10 barley genetic lines in salt stress. Field Crops Research, 99: 249-251.
Kusvuran, S. 2012. Effects of drought and salt stresses on growth, stomatal conductance, leaf water and osmotic potentials of melon genotypes (Cucumis melo L.). African Journal of Agricultural Research, 7 (5): 775-781.
Kusvuran, S., Ellialtioglu, S., Yasar, F. and Abak, K. 2007a. Effects of salt stress on ion accumulation and activity of some antioxidant enzymes in melon (Cucumis melo L.). Journal of Food Agriculture and Environment, 5: 351-354.
Kusvuran, S., Ellialtıoglu, S., Abak, K. and Yasar, F. 2007b. Responses of some melon (Cucumis sp.) genotypes to salt stress. Journal of Agricultural Science, 13: 395-404.
Kusvuran, S., Yasar, F., Ellialtioghu, S. and Abak, K. 2007c. Utilizing some of screening methods in order to determine tolerance of salt stress in the Melon (Cucumis melo L.). Research Journal of Agriculture and Biological Sciences, 3 (1): 40-45.
Marschner, H. 1995. Mineral nutrition of higher plants. 2nd Edn, Academic Press, London, New York. pp: 200-225.
Naeini, M. R., Khoshgoftarmanesh, A. H. and Fallahi, E. 2006. Partitioning of chlorine, sodium and potassium and shoot growth of three pomegranate cultivars under different levels of salinity. Journal of Plant Nutrition, 29: 1835-1843.
Ranjbar, A., Lemeur, R. and Van Damme, P. 2001. Ecophysiological characteristics of two pistachio species (Pistacia khinjuk and Pistacia mutica) in response to salinity. Coupure Link 653, B, 9000.
Sevengor, S., Yasar, F., Kusvuran, S. and Ellialtioglu, S. 2011. The effect of salt stress on growth. chlorophyll content, lipid peroxidation and antioxidative enzymes of pumpkin seedlings. African Journal of Agricultural Research, 6: 4920-4924.
Staples, R. C. and Toenniessen, G. H. 1984. Salinity tolerance in plants. John Wiley and Sons. pp. 443.
Sutcliffe, J. F. and Baker, D. A. 1981. Plants and mineral salts. Edward Arnold (Publishers) Ltd. pp.66.
Weimberg, R. 1987. Solute adjustments in leaves of two species of wheat at two different stages of growth in response to salinity. Physiologia Plantarum, 70(3): 381-388.